
© 2020 UCF Consortium 1

Designing and Implementing Next Generation Collectives Library
Manjunath Gorentla Venkata on behalf of Collectives WG, UCF Workshop, Dec 3rd, 2020

Unified Collective Communications (UCC):

© 2020 UCF Consortium 2

UCC is a collective communication operations API and library that is flexible, complete, and
feature-rich for current and emerging programming models and runtimes.

© 2020 UCF Consortium 3

Outline

§ Design challenges

§ Properties of the solution

§ API Overview

§ Reference implementation and project status

§ Roadmap

© 2020 UCF Consortium 4

UCC Design Challenges

§ Unified collective stack for HPC and DL/ML workloads
• Need to support a wide variety of semantics

• Need to optimize for different performance sensitives - latency, bandwidth, throughput

• Need for flexible resource scheduling model

• Need for flexible ordering model

§ Unified collective stack for software and hardware transports
• Need for complex resource management - scheduling, sharing, and exhaustion

• Need to support multiple semantic differences – reliability, completion

§ Unify parallelism and concurrency
• Concurrency – progress of a collective and the computation

• Parallelism – progress of many independent collectives

§ Unify execution models for CPU, GPU, and DPU collectives
• Two-way execution model – control operations are tightly integrated

- Do active progress, returns values, errors, and callbacks will less overhead
• One-way execution model – control operations are loosely integrated

- passive progress, and handle return values (GPU/DPUs)

© 2020 UCF Consortium 5

UCC Design: Properties we want

§ Scalability and performance for key use-cases
• Enable efficient implementation for common cases in MPI, OpenSHMEM and AI/ML

§ Extensible
• We cannot possibly cover all the options and features for all use cases

• We need the API and semantics that is modular

§ Opt in-and-out
• If for a certain path some semantic is not applicable, we need a way to opt-out

§ Explicit API and semantics over implicit
• Explicit -> implicit is easier than implicit -> explicit

§ Minimal API surface area
• Lessen the mental load

• A few set of abstractions to understand and go into details when required

§ Other properties such as the ability to override functionality, composability, programmability, and
many more are important.

© 2020 UCF Consortium 6

UCC’s Solution: Key Concepts

§ Abstractions
• Abstract the resources required for collective operations
• Local: Library, Context, Endpoints
• Global: Teams

§ Operations
• Create/modify/destroy the resources
• Build, launch and finalize collectives

§ Properties
• Explicit way to request for optional features, semantics, and optimizations
• Provides an ability to express and request many cross-cutting features
• Properties are preferences expressed by the user of the library and what the library provides must be queried
- In the future, we might extend the properties to be “required” in addition to the “preferred” and “query” model

• Examples: Collective types, ordering, synchronization, thread model

§ Challenge is to map a broad range of requirements to these concepts
§ Overall, this approach has worked

• Minimizes the API surface area,
• Extendible
• Scalable and efficient from the prototype implementations

© 2020 UCF Consortium 7

Concepts

1. Abstractions for Resources

• Collective Library

• Communication Context

• Teams

• Endpoints

2. Operations

• Collective Operations

© 2020 UCF Consortium 8 8

ucc_lib_h encapsulates all resources related to the group communication
operations

UCC Library Handle

Semantics
§ All UCC operations should be invoked between the init and finalize operations.

§ Properties

§ Collective types
§ Thread model
§ Synchronization model

§ Operations

§ Routines for initializing and finalizing the library handle.
§ Query the properties

© 2020 UCF Consortium 9

UCC Library Handle

© 2020 UCF Consortium 1010

ucc_context_h local resources required for expressing network parallelism

UCC Context Handle

Usage
§ Encapsulate local network resources such as IB QPs, SHARP trees, or UCX worker

§ To express affinity between network resource and thread invoking the collective

§ Resource sharing between multiple collectives

§ Properties

§ Shared or exclusive
§ Thread model
§ Synchronization model

§ Operations

§ Routines for creating and destroying the context
§ Query the properties

© 2020 UCF Consortium 11

UCC Context

© 2020 UCF Consortium 1212

ucc_team_h encapsulates the global resources required for collective
communication operations.

UCC Team handle

Usage
§ Map MPI communicator/”group” abstractions to UCC teams

§ Negotiate and converge on the semantics of how local resources are used during collective operations

§ Properties

§ Shared or exclusive
§ Thread model
§ Synchronization model

§ Operations

§ Routines for creating and destroying the context
§ Query the properties

© 2020 UCF Consortium 13

Team Create Interface

© 2020 UCF Consortium 14

Properties: Example with Teams abstraction

© 2020 UCF Consortium 1515

Collective Operations: Building Blocks

© 2020 UCF Consortium 1616

Collective Operations

§ Collective operations : ucc_collective_init(…) and ucc_collective_init_and_post(…)

§ Local operations: ucc_collective_post, test, and finalize

§ Initialize with ucc_collective_init(…)
§ Initializes the resources required for a particular collective operation, but does not post the operation

§ Completion

§ The test routine provides the status
§ Finalize

§ Releases the resources for the collective operation represented by the request
§ The post and wait operations are invalid after finalize

© 2020 UCF Consortium 17

UCC Spec: Interfaces and semantics fully specified

Contents

1 Unified Collective Communications (UCC) Library Specification 1

2 Design 2

2.0.1 Component Diagram . 2

3 Library Initialization and Finalization 3

4 Communication Context 4

5 Teams 5

6 Starting and Completing the Collectives 7

7 Module Documentation 8

7.1 Library initialization data-structures . 8

7.1.1 Detailed Description . 9

7.1.2 Data Structure Documentation . 10

7.1.2.1 struct ucc_lib_params . 10

7.1.2.2 struct ucc_lib_attr . 10

7.1.3 Typedef Documentation . 10

7.1.3.1 ucc_lib_params_t . 10

7.1.3.2 ucc_lib_attr_t . 11

7.1.3.3 ucc_lib_h . 11

7.1.3.4 ucc_lib_config_h . 11

7.1.4 Enumeration Type Documentation . 11

7.1.4.1 ucc_reduction_op_t . 11

7.1.4.2 ucc_coll_type_t . 12

7.1.4.3 ucc_datatype_t . 12

7.1.4.4 ucc_thread_mode_t . 13

7.1.4.5 ucc_coll_sync_type_t . 13

7.1.4.6 ucc_lib_params_field . 13

7.1.4.7 ucc_lib_attr_field . 14

7.2 Library initialization and finalization routines . 15

7.2.1 Detailed Description . 15

§ Download from the UCC github and build it.
§ Specification is ahead of the code now
§ The version 1.0 is agreed by the working group and

merged into the master branch
§ Changes are allowed but requires high-bar for

integration.
§ Over 60 pages of detailed information about the

interfaces and semantics
§ Doxygen based documentation

§ Both pdf and html available

© 2020 UCF Consortium 18

Experimental Implementations

© 2020 UCF Consortium 19

UCC : A convergence of multiple implementations

§ UCC API has emerged as this convergence …
§ Now working towards converged implementation

§ Particularly XUCG and XCCL
§ XCCL

• Driven by NVIDIA/Mellanox and hierarchical based design

• https://github.com/openucx/xccl

§ XUCG
• Driven by Huawei and reactive based design

• https://github.com/openucx/xucg

§ HCOLL, PAMI and other collectives design and implementation

https://github.com/openucx/xccl
https://github.com/openucx/xucg

© 2020 UCF Consortium 20

XCCL: Collective implementation using UCC API and semantics

§ Developed to experiment with UCC API, design, and semantics
• Uses XCCL namespace instead of UCC

• Implements a subset of UCC API

• Code-base evolving along with the design discussions in the WG

§ Hierarchical-based implementation
• Supports composition of shared memory, software and hardware collectives

§ Supports both software and hardware transports
• UCX based implementation for general network transport

• Leverages SHARP collectives when appropriate hardware is available

• Leverages hardware multicast support for broadcast collective operation

• Specialized shared memory collectives for systems with high core count

• Offloaded collectives for DPUs

• Supports using GPU buffers for collective operations

§ Supports HPC and AI/ML semantics
• Currently integrated with Open MPI and PYTorch

• Production-ready and used with real workloads

© 2020 UCF Consortium 21

XCCL based MPI Allreduce latency

0

200

400

600

800

1000

1200

1400

32 64 128 256 512 1024 2048

La
te

nc
y

in
 M

ic
ro

se
co

nd
s

Number of MPI Ranks

OSU MPI Allreduce Benchmark
Message Size = 1 MB

PPN = 32 Ranks per node

ompi
xccl

Slide courtesy: Valentine Petrov (NVIDIA)

© 2020 UCF Consortium 22

XCCL based MPI Broadcast latency

0

20

40

60

80

100

120

140

160

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92

La
te

nc
y

in
 M

ic
ro

se
co

nd
s

Number of Ranks

OSU MPI Broadcast
Message size = 64 KB

xccl/hmc
ompi/tuned

Slide courtesy: Valentine Petrov (NVIDIA)

© 2020 UCF Consortium 23

XUCG Experimental Results

© 2020 UCF Consortium 24

XUCG based Broadcast (Preliminary Results)

Data courtesy: Alex Margolin (HUAWEI)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

3 4 5 8 10 16 20 32 40 63 64 80

La
te

nc
y

in
 M

ic
ro

se
co

nd
s

MPI Ranks

MPI Broadcast
Message Size8 = 8 Byte

ConnectX-6 RoCE

P2P
SM-TL

© 2020 UCF Consortium 25

XUCG based Allreduce (Preliminary Results)

Slide courtesy: Alex Margolin (HUAWEI)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

3 4 5 8 10 16 20 32 40 63 64 80

La
te

nc
y

in
 M

ic
ro

se
co

nd
s

MPI Ranks

MPI Allreduce
Message Size8 = 8 Byte

ConnectX-6 RoCE

P2P
SM-TL

© 2020 UCF Consortium 26

Talks on XCCL and XUCG

§ One-to-many UCT transports, part I: Shared-memory (Alex/HUAWEI)

§ One-to-many UCT transports, part II: Multicast (Morad/HUAWEI)

§ Until UCC is available - UCG status update (Alex/HUAWEI)

§ Scaling Facebook's Deep Learning Recommender Model (DLRM) with UCC/XCCL

(Josh/NVIDIA, Srinivas/FaceBook)

© 2020 UCF Consortium 27

UCC Reference Implementation

© 2020 UCF Consortium 28

UCC Reference Implementation: Component Diagram

UCX

UCS

UCC Services

UDT

UCC Datatypes

UDT
P2P_Collectives

UCC_TL

OPT

SHARP
UCC_TL MCAST

UCG

Hiearcharical
Engine

Reactive
Engine

Basic

UCC_TL_internal API

Vendor / NCCL
Schedule
Builder

Hierarchy-aware
Task

Schedule
Execution
Engine

Deadline-based
task

Hierarchical
Engine

Reactive
Engine

Fabric-based
TL

CONTEXT
Storage

Topology

Algorithm
Primitives

CORE Component

UCC_internal API

UC
C

Open MPI / MPICH OpenSHMEM / UPC /
PGAS PyTorch / Tensor Flow

SHARP/Hardware CollectivesVerbs

Legion / Parsec

Applications

NCCL/MVAPICH

Shared Memory

© 2020 UCF Consortium 29

UCC: Reference Implementation Status

© 2020 UCF Consortium 30

UCC Release Roadmap

© 2020 UCF Consortium 31

UCC v1.0 Expected to Release Q1 2021

§ v1.0 Early Release

• Specification document: Well defined API and semantics
• Reference implementation
- Support with important MPI collectives and fallback for

rest
§ Barrier, Broadcast, Allreduce, and Alltoall

- Multithreading support
• Support for OpenMPI
• Support for PyTorch

• Infrastructure
- Unit test infrastructure

§ v1.0 Stable Release (Target: Q2 2021)
• Incorporate feedback from the early release
• MTT for performance and functional testing
• Performance tests

§ v1 Series focusses on performance and
stability

§ v2.0 release : Advance features and more
programming models
• Task management

• Algorithm selection

• Complete GPU support

• Support for DPUs

• Support for PGAS collectives

• Advanced topology support

© 2020 UCF Consortium 32

Plenty of work : Contributions are welcome!

§ Acknowledgements
• Contributions came from many working group members who participate weekly

§ What contributions are welcomed ?
• Everything from design, documentation, code, testing infrastructure, code reviews …

§ How to participate ?
• WG Meetings : https://github.com/openucx/ucc/wiki/UCF-Collectives-Working-Group

• GitHUB: https://github.com/openucx/ucc

• Slack channel: Ask for an invite

• Mailing list: ucx-group@elist.ornl.gov

mailto:ucx-group@elist.ornl.gov

© 2020 UCF Consortium 33

Thank You The UCF Consortium is a collaboration between industry, laboratories,
and academia to create production grade communication frameworks
and open standards for data centric and high-performance applications.

