
Unified Collective Communications (UCC) Specification

Version 1.2

Contents

1 Unified Collective Communications (UCC) Library Specification 1

2 Design 2
2.0.1 Component Diagram . 2

3 Library Initialization and Finalization 3

4 Communication Context 4

5 Teams 5

6 Types of Collective Operations 7

7 Execution Engine and Events 12
7.0.1 Triggered Operations . 12
7.0.2 Interaction between an User Thread and Event-driven UCC 12

8 Module Documentation 14
8.1 Library initialization data-structures . 14

8.1.1 Detailed Description . 15
8.1.2 Data Structure Documentation . 15

8.1.2.1 struct ucc_lib_params . 15
8.1.2.2 struct ucc_lib_attr . 16

8.1.3 Typedef Documentation . 16
8.1.3.1 ucc_lib_params_t . 16
8.1.3.2 ucc_lib_attr_t . 16
8.1.3.3 ucc_lib_h . 17
8.1.3.4 ucc_lib_config_h . 17

8.1.4 Enumeration Type Documentation . 17
8.1.4.1 ucc_coll_type_t . 17
8.1.4.2 ucc_reduction_op_t . 18
8.1.4.3 ucc_thread_mode_t . 18
8.1.4.4 ucc_coll_sync_type_t . 18
8.1.4.5 ucc_lib_params_field . 19
8.1.4.6 ucc_lib_attr_field . 19

8.2 Datatypes data-structures and functions . 19
8.2.1 Detailed Description . 20
8.2.2 Data Structure Documentation . 20

8.2.2.1 struct ucc_reduce_cb_params . 20
8.2.3 Typedef Documentation . 21

8.2.3.1 ucc_datatype_t . 21
8.2.3.2 ucc_reduce_cb_params_t . 21
8.2.3.3 ucc_generic_dt_ops_t . 21

8.2.4 Enumeration Type Documentation . 21
8.2.4.1 ucc_generic_dt_ops_field . 21
8.2.4.2 ucc_generic_dt_ops_flags_t . 21

8.2.5 Function Documentation . 22

CONTENTS ii

8.2.5.1 ucc_dt_create_generic() . 22
8.2.5.2 ucc_dt_destroy() . 22

8.2.6 Variable Documentation . 22
8.2.6.1 start_pack . 22
8.2.6.2 start_unpack . 23
8.2.6.3 packed_size . 23
8.2.6.4 pack . 23
8.2.6.5 unpack . 24
8.2.6.6 finish . 24
8.2.6.7 . 24
8.2.6.8 . 24
8.2.6.9 . 24

8.3 Library initialization and finalization routines . 25
8.3.1 Detailed Description . 25
8.3.2 Function Documentation . 25

8.3.2.1 ucc_lib_config_read() . 25
8.3.2.2 ucc_lib_config_release() . 26
8.3.2.3 ucc_lib_config_print() . 26
8.3.2.4 ucc_lib_config_modify() . 26
8.3.2.5 ucc_get_version() . 27
8.3.2.6 ucc_get_version_string() . 27
8.3.2.7 ucc_init() . 27
8.3.2.8 ucc_finalize() . 27
8.3.2.9 ucc_lib_get_attr() . 28

8.4 Context abstraction data-structures . 28
8.4.1 Detailed Description . 29
8.4.2 Data Structure Documentation . 29

8.4.2.1 struct ucc_mem_map . 29
8.4.2.2 struct ucc_mem_map_params . 29
8.4.2.3 struct ucc_context_params . 29
8.4.2.4 struct ucc_context_attr . 30

8.4.3 Typedef Documentation . 30
8.4.3.1 ucc_oob_coll_t . 30
8.4.3.2 ucc_mem_map_t . 30
8.4.3.3 ucc_mem_map_params_t . 30
8.4.3.4 ucc_context_params_t . 30
8.4.3.5 ucc_context_attr_t . 31
8.4.3.6 ucc_context_h . 31
8.4.3.7 ucc_context_config_h . 31

8.4.4 Enumeration Type Documentation . 31
8.4.4.1 ucc_context_type_t . 31
8.4.4.2 ucc_context_params_field . 31
8.4.4.3 ucc_context_attr_field . 31

8.5 Context abstraction routines . 32
8.5.1 Detailed Description . 32
8.5.2 Function Documentation . 32

8.5.2.1 ucc_context_config_read() . 32
8.5.2.2 ucc_context_config_release() . 33
8.5.2.3 ucc_context_config_print() . 33
8.5.2.4 ucc_context_config_modify() . 33
8.5.2.5 ucc_context_create() . 34
8.5.2.6 ucc_context_progress() . 34
8.5.2.7 ucc_context_destroy() . 35
8.5.2.8 ucc_context_get_attr() . 35

8.6 Team abstraction data-structures . 35
8.6.1 Detailed Description . 37
8.6.2 Data Structure Documentation . 37

8.6.2.1 struct ucc_ep_map_strided . 37

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

CONTENTS iii

8.6.2.2 struct ucc_ep_map_array . 37
8.6.2.3 struct ucc_ep_map_t . 37
8.6.2.4 struct ucc_team_params . 37
8.6.2.5 struct ucc_team_attr . 39
8.6.2.6 union ucc_ep_map_t.__unnamed2__ 39

8.6.3 Typedef Documentation . 40
8.6.3.1 ucc_team_p2p_conn_t . 40
8.6.3.2 ucc_ep_map_t . 40
8.6.3.3 ucc_team_params_t . 40
8.6.3.4 ucc_team_attr_t . 40
8.6.3.5 ucc_team_h . 40
8.6.3.6 ucc_p2p_conn_t . 40
8.6.3.7 ucc_context_addr_h . 40
8.6.3.8 ucc_context_addr_len_t . 40

8.6.4 Enumeration Type Documentation . 40
8.6.4.1 ucc_team_params_field . 41
8.6.4.2 ucc_team_attr_field . 41
8.6.4.3 ucc_team_flags . 41
8.6.4.4 ucc_post_ordering_t . 41
8.6.4.5 ucc_ep_range_type_t . 42
8.6.4.6 ucc_ep_map_type_t . 42

8.7 Team abstraction routines . 42
8.7.1 Detailed Description . 43
8.7.2 Function Documentation . 43

8.7.2.1 ucc_team_create_post() . 43
8.7.2.2 ucc_team_create_test() . 43
8.7.2.3 ucc_team_destroy() . 44
8.7.2.4 ucc_team_get_attr() . 44
8.7.2.5 ucc_team_create_from_parent() . 44

8.8 Collective operations data-structures . 45
8.8.1 Detailed Description . 46
8.8.2 Data Structure Documentation . 46

8.8.2.1 struct ucc_coll_buffer_info_v . 46
8.8.2.2 struct ucc_coll_buffer_info . 46

8.8.3 Typedef Documentation . 47
8.8.3.1 ucc_memory_type_t . 47
8.8.3.2 ucc_coll_buffer_info_v_t . 47
8.8.3.3 ucc_coll_buffer_info_t . 47
8.8.3.4 ucc_coll_req_h . 47
8.8.3.5 ucc_coll_callback_t . 47
8.8.3.6 ucc_count_t . 47
8.8.3.7 ucc_aint_t . 47
8.8.3.8 ucc_coll_id_t . 47

8.8.4 Enumeration Type Documentation . 47
8.8.4.1 ucc_memory_type . 47
8.8.4.2 ucc_coll_args_flags_t . 48
8.8.4.3 ucc_coll_args_hints_t . 48
8.8.4.4 ucc_error_type_t . 49
8.8.4.5 ucc_coll_args_field . 49

8.9 Collective Operations . 49
8.9.1 Detailed Description . 50
8.9.2 Data Structure Documentation . 50

8.9.2.1 struct ucc_coll_args . 50
8.9.2.2 union ucc_coll_args.src . 51
8.9.2.3 union ucc_coll_args.dst . 51
8.9.2.4 struct ucc_coll_args.active_set . 51

8.9.3 Typedef Documentation . 51
8.9.3.1 ucc_coll_args_t . 51

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

CONTENTS iv

8.9.3.2 ucc_mem_h . 52
8.9.4 Function Documentation . 52

8.9.4.1 ucc_collective_init() . 52
8.9.4.2 ucc_collective_post() . 52
8.9.4.3 ucc_collective_init_and_post() . 53
8.9.4.4 ucc_collective_test() . 53
8.9.4.5 ucc_collective_finalize() . 53

8.10 Events and Triggered operations' data-structures . 54
8.10.1 Detailed Description . 54
8.10.2 Data Structure Documentation . 54

8.10.2.1 struct ucc_event . 54
8.10.2.2 struct ucc_ee_params . 54

8.10.3 Typedef Documentation . 55
8.10.3.1 ucc_event_type_t . 55
8.10.3.2 ucc_ee_type_t . 55
8.10.3.3 ucc_ev_t . 55
8.10.3.4 ucc_ee_params_t . 55

8.10.4 Enumeration Type Documentation . 55
8.10.4.1 ucc_event_type . 55
8.10.4.2 ucc_ee_type . 55

8.11 Events and Triggered Operations . 56
8.11.1 Detailed Description . 56
8.11.2 Function Documentation . 56

8.11.2.1 ucc_ee_create() . 56
8.11.2.2 ucc_ee_destroy() . 57
8.11.2.3 ucc_ee_get_event() . 57
8.11.2.4 ucc_ee_ack_event() . 57
8.11.2.5 ucc_ee_set_event() . 58
8.11.2.6 ucc_ee_wait() . 58
8.11.2.7 ucc_collective_triggered_post() . 58

8.12 Utility Operations . 59
8.12.1 Detailed Description . 59
8.12.2 Enumeration Type Documentation . 59

8.12.2.1 ucc_config_print_flags_t . 59
8.12.2.2 ucc_status_t . 60

8.12.3 Function Documentation . 60
8.12.3.1 ucc_status_string() . 60

9 Data Structure Documentation 61
9.1 ucc_coll_callback Struct Reference . 61

9.1.1 Detailed Description . 61
9.1.2 Field Documentation . 61

9.1.2.1 cb . 61
9.1.2.2 data . 61

9.2 ucc_ep_map_cb Struct Reference . 61
9.2.1 Field Documentation . 61

9.2.1.1 cb . 61
9.2.1.2 cb_ctx . 62

9.3 ucc_generic_dt_ops Struct Reference . 62
9.3.1 Detailed Description . 62
9.3.2 Field Documentation . 62

9.3.2.1 mask . 62
9.3.2.2 flags . 62
9.3.2.3 contig_size . 63

9.4 ucc_generic_dt_ops.reduce Struct Reference . 63
9.4.1 Detailed Description . 63
9.4.2 Field Documentation . 63

9.4.2.1 cb . 63

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

CONTENTS v

9.4.2.2 cb_ctx . 63
9.5 ucc_oob_coll Struct Reference . 63

9.5.1 Field Documentation . 63
9.5.1.1 allgather . 64
9.5.1.2 req_test . 64
9.5.1.3 req_free . 64
9.5.1.4 coll_info . 64
9.5.1.5 n_oob_eps . 64
9.5.1.6 oob_ep . 64

9.6 ucc_team_p2p_conn Struct Reference . 64
9.6.1 Field Documentation . 64

9.6.1.1 conn_info_lookup . 64
9.6.1.2 conn_info_release . 64
9.6.1.3 conn_ctx . 65
9.6.1.4 req_test . 65
9.6.1.5 req_free . 65

Index 66

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

Chapter 1

Unified Collective Communications (UCC)
Library Specification

UCC is a collective communication operations API and library that is flexible, complete, and feature-rich for
current and emerging programming models and runtimes.

Chapter 2

Design

• Highly scalable and performant collectives for HPC, AI/ML and I/O workloads

• Nonblocking collective operations that cover a variety of programming models

• Flexible resource allocation model

• Support for relaxed ordering model

• Flexible synchronous model

• Repetitive collective operations (init once and invoke multiple times)

• Hardware collectives are a first-class citizen

2.0.1 Component Diagram

UCX

UCP
TL

Basic
CL

UCC_TL_internal API

Schedule
Builder

Hierarchy-aware
Tasks

Execution
Engine

HIP
Streams

CONTEXT
Storage

Topology

Algorithm
Primitives

CORE Component

UCC_internal API

UC
C

Open MPI / MPICH
OpenSHMEM / UPC /

PGAS PyTorch / Tensor Flow

SHARP/
Hardware

Collectives

Legion / Parsec

NCCL
TL

UCS

UCC Services

Hier
CL

Vendor
CL

SHARP
TL

RCCL

Applications

RCCL
TL

NCCL

CUDA
StreamsCUDA

TL

CUDA

SELF
TL

VENDOR
TL

Figure 2.1: UCC Components and Usage

Chapter 3

Library Initialization and Finalization

These routines are responsible for allocating, initializing, and finalizing the resources for the library.

The UCC can be configured in three thread modes UCC_THREAD_SINGLE, UCC_THREAD_FUNNELED,
and UCC_LIB_THREAD_MULTIPLE. In the UCC_THREAD_SINGLE mode, the user program must not be
multithreaded. In the UCC_THREAD_FUNNELED mode, the user program may be multithreaded. However,
all UCC interfaces should be invoked from the same thread. In the UCC_THREAD_MULTIPLE mode, the
user program can be multithreaded and any thread may invoke the UCC operations.

The user can request different types of collective operations that vary in their synchronization models. The
valid synchronization models are UCC_NO_SYNC_COLLECTIVES and UCC_SYNC_COLLECTIVES. The
details of these synchronization models are described in the collective operation section.

The user can request the different collective operations and reduction operations required. The complete
set of valid collective operations and reduction types are defined with the structures ucc_coll_type_t and
ucc_reduction_op_t.

Chapter 4

Communication Context

The ucc_context_h is a communication context handle. It can encapsulate resources required for collective
operations on team handles. The contexts are created by the ucc_context_create operation and destroyed by
the ucc_context_destroy operation. The create operation takes in user-configured ucc_context_params_t
structure to customize the context handle. The attributes of the context created can be queried using the
ucc_context_get_attribs operation.

When no out-of-band operation (OOB) is provided, the ucc_context_create operation is local requiring
no communication with other participants. When OOB operation is provided, all participants of the OOB
operation should participate in the create operation. If the context operation is a collective operation, the
ucc_context_destroy operation is also a collective operation .i.e., all participants should call the destroy
operation.

The context can be created as an exclusive type or shared type by passing constants UCC_CONTEXT_←↩
EXCLUSIVE and UCC_CONTEXT_SHARED respectively to the ucc_context_params_t structure. When
context is created as a shared type, the same context handle can be used to create multiple teams. When
context is created as an exclusive type, the context can be used to create multiple teams but the team handles
cannot be valid at the same time; a valid team is defined as a team object where the user can post collective
operations.

Notes : From the user perspective, the context handle represents a communication resource. The user can
create one context and use it for multiple teams or use with a single team. This provides a finer control of
resources for the user. From the library implementation perspective, the context could represent the network
parallelism. The UCC library implementation can choose to abstract injection queues, network endpoints, GPU
device context, UCP worker, or UCP endpoints using the communication context handles.

Chapter 5

Teams

The ucc_team_h is a team handle, which encapsulates the resources required for group operations such as
collective communication operations. The participants of the group operations can either be an OS process,
a control thread or a task.

Create and destroy routines: ucc_team_create_post routine is used to create the team handle and ucc_←↩
team_create_test routine for learning the status of the create operation. The team handle is destroyed by the
ucc_team_destroy operation. A team handle is customized using the user configured ucc_team_params_t
structure.

Invocation semantics: The ucc_team_create_post is a nonblocking collective operation, in which the partic-
ipants are determined by the user-provided OOB collective operation. Overlapping of multiple ucc_team_←↩
create_post operations are invalid. Posting a collective operation before the team handle is created is invalid.
The team handle is destroyed by a blocking collective operation; the participants of this collective operation
are the same as the create operation. When the user does not provide an OOB collective operation, all
participants calling the ucc_create_post operation will be part of a new team created.

Communication Contexts: Each process or a thread participating in the team creation operation contributes
one or more communication contexts to the operation. The number of contexts provided by all participants
should be the same and each participant should provide the same type of context. The newly created team
uses the context for collective operations. If the communication context abstracts the resources for the library,
the collective operations on this team uses the resources provided by the context.

Endpoints: That participants to the ucc_team_create_post operation can provide an endpoint, a 64-bit
unsigned integer. The endpoint is an address for communication. Each participant of the team has a unique
integer as endpoint .i.e., the participants of the team do not share the same endpoint. For example, the user
can bind the endpoint to the parallel programming model’s index such as OpenSHMEM PE, an OS process ID,
or a thread ID. The UCC implementation can use the endpoint as an index to identify the resources required
for communication such as communication contexts. When the user does not provide the endpoint, the library
generates the endpoint, which can be queried by the user. In addition to the endpoint, the user can provide
information about the endpoints such as whether the endpoint is a continuous range or not.

Ordering: The collective operations on the team can either be ordered or unordered. In the ordered model, the
UCC collectives are invoked in order .i.e., on a given team, each of the participants of the collective operation
invokes the operation in the same order. In the unordered model, the collective operations are not necessarily
invoked in the same order.

Interaction with Threads: The team can be created in either mode .i.e., the library initialized by UCC_←↩
LIB_THREAD_MULTIPLE, UCC_LIB_THREAD_SINGLE, or UCC_LIB_THREAD_FUNNEDLED. In the
UCC_LIB_THREAD_MULTIPLE mode, each of the user threads can post a collective operation. However,
it is not valid to post concurrent collectives operations from multiple threads to the same team.

Memory per Team: A team can be configured by a memory descriptor described by ucc_mem_map_←↩
params_t structure. The memory can be used as an input and output buffers for the collective operation.
This is particularly useful for PGAS programming models, where the input and output buffers are defined
before the invocation operation. For example, the input and output buffers in the OpenSHMEM programming
model are defined during the programming model initialization.

6

Synchronization Model: The team can be configured to support either synchronized collectives or non-
synchronized collectives. If the UCC library is configured with synchronized collective operations and the
team is configured with non-synchronized collective operations, the library might not be able to provide any
optimizations and might support only synchronized collective operations.

Outstanding Calls: The user can configure maximum number of outstanding collective operations of any
type for a given team. This is represented by an unsigned integer. This is provided as a hint to the library for
resource management.

Team ID: The team identifier is a unique 64-bit unsigned integer for the given process .i.e, the team identifier
should be unique for all teams it creates or participates. If the team identifier is provided by the user, it should
be passed as a configuration parameter to the team create operation.

Split Team Operations

The team split routines provide an alternate way to create teams. All split routines require a parent team
and all participants of the parent team call the split operation. The participants of the new team may include
some or all participants of the parent team.

The newly created team shares the communication contexts with the parent team. The endpoint of the new
team is contiguous and is not related to the parent team. It inherits the thread model, synchronization model,
collective ordering model, outstanding collectives configuration, and memory descriptor from the parent team.

The split operation can be called by multiple threads, if the parent team to the split operations are different
and if it agrees with the thread model of the UCC library.

Notes: The rationale behind requiring all participants of the parent team to participate in the split opera-
tion is to avoid overlapping participants between multiple split operations, which is known to increase the
implementation complexity. Also, currently, higher-level programming models do not require these semantics.

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

Chapter 6

Types of Collective Operations

A UCC collective operation is a group communication operation among the participants of the team. All
participants of the team are required to call the collective operation. Each participant is represented by the
endpoint that is unique to the team used for the collective operation. This section provides a set of routines
for launching, progressing, and completing the collective operations.

Invocation semantics: The ucc_collective_init routine is a non-blocking collective operation to initialize
the buffers, operation type, reduction type, and other information required for the collective operation. All
participants of the team should call the initialize operation. The collective operation is invoked using a ucc←↩
_collective_post operation. ucc_collective_init_and_post operation initializes as well as post the collective
operation.

Collective Type: The collective operation supported by UCC is defined by the enumeration ucc_coll_type←↩
_t. The semantics are briefly described here, however in most cases it agrees with the semantics of collective
operations in the popular programming models such as MPI and OpenSHMEM. When they differ, the semantics
changes are documented. All collective operations execute on the team. For the collective operations defined
by ucc_coll_type_t, all participants of the team are required to participate in the collective operations.
Further the team should be created with endpoints, where the “eps” should be ordered and contiguous.

UCC supports three types of collective operations: (a) UCC_{ALLTOALL, ALLTOALLV, ALLGATHER, ALL-
GATHERV, ALLREDUCE, REDUCE_SCATTER, REDUCE_SCATTERV, BARRIER} operations where all
participants contribute to the results and receive the results (b) UCC_{REDUCE, GATHER, GATHERV,
FANIN} where all participants contribute to the result and one participant receives the result. The participant
receiving the result is designated as root. (c) UCC_{BROADCAST, SCATTER, SCATTERV, FANOUT}
where one participant contributes to the result, and all participants receive the result. The participant con-
tributing to the result is designated as root.

• The UCC_COLL_TYPE_BCAST operation moves the data from the root participant to all participants
in the team.

• The UCC_COLL_TYPE_BARRIER synchronizes all participants of the collective operation. In this
routine, first, each participant waits for all other participants to enter the operation. Then, once it
learns the entry of all other participants into the operation, it exits the operation completing it locally.

• In the UCC_COLL_TYPE_FAN_IN operation, the root participant synchronizes with all participants
of the team. The non-root completes when it sends synchronizing message to the root. Unlike UCC←↩
_COLL_TYPE_BARRIER, it doesn’t have to synchronize with the rest of the non-root participants.
The root participant completes the operation when it receives synchronizing messages from all non-root
participants of the team.

• The UCC_COLL_TYPE_FAN_OUT operation is a synchronizing operation like UCC_COLL_TYPE←↩
_FAN_OUT. In this operation, the root participant sends a synchronizing message to all non-root
participants and completes. The non-root participant completes once it receives a message from the
root participant.

• In the UCC_COLL_TYPE_GATHER operation, each participant of the collective operation sends data
to the root participant. All participants send the same amount of data (block_size) to the root. The

8

size of the block is “dt_elem_size ∗ count”. The total amount of data received by the root is equal
to block_size ∗ num_participants. Here, the “count” represents the number of data elements. The
"dt_elem_size" represents the size of the data element in bytes. The "num_participants" represents
the number of participants in the team. The data on the root is placed in the receive buffer ordered by
the “ep” ordering. For example, if the participants’ endpoints are ordered as “ep_a” to “ep_n”, the data
from the participant with ep_i is placed as an “ith” block on the receive buffer.

• The UCC_COLL_TYPE_ALLGATHER operation is similar to UCC_COLL_TYPE_GATHER with
one exception. Unlike in GATHER operation, the result is available at all participants’ receive buffer
instead of only at the root participant.

Each participant sends the data of size "block_size" to all other participants in the collective operation.
The size of the block is “dt_elem_size ∗ count”. Here, the “count” represents the number of data
elements. The "dt_elem_size" represents the size of the data element in bytes. The data on each
participant is placed in the receive buffer ordered by the “ep” ordering. For example, if the participants’
endpoints are ordered as “ep_a” to “ep_n”, the data from the participant with ep_i is placed as an “ith”
block on the receive buffer.

• In the UCC_COLL_TYPE_SCATTER operation, the root participant of the collective operation sends
data to all other participants. It sends the same amount of data (block_size) to all participants. The size
of the block (block_size) is “dt_elem_size ∗ count”. The total amount of data sent by the root is equal
to block_size ∗ num_participants. Here, the “count” represents the number of data elements. The
"dt_elem_size" represents the size of the data element in bytes. The "num_participants" represents
the number of participants in the team.

• In the UCC_COLL_TYPE_ALLTOALL collective operation, all participants exchange a fixed amount
of the data. For a given participant, the size of data in src buffer is “size”, where size is dt_elem←↩
_size ∗ count ∗ num_participants. Here, the “count” represents the number of data elements per
destination. The "dt_elem_size" represents the size of the data element in bytes. The "num_←↩
participants" represents the number of participants in the team. The size of src buffer is the same as
the dest buffer, and it is the same across all participants. Each participant exchanges “dt_elem_size ∗
count “ data with every participant of the collective.

• In UCC_COLL_TYPE_REDUCE collective the element-wise reduction operation is performed on the
src buffer of all participants in the collective operation. The result is stored on the dst buffer of the root.
The size of src buffer and dst buffer is the same, which is equal to “dt_elem_size ∗ count”. Here, the
“count” represents the number of data elements. The "dt_elem_size" represents the size of the data
element in bytes.

• The UCC_COLL_TYPE_ALLREDUCE first performs an element-wise reduction on the src buffers of
all participants. Then the result is distributed to all participants. After the operation, the results are
available on the dst buffer of all participants. The size of src buffer and dst buffer is the same for all
participants. The size of src buffer and dst buffer is the same, which is equal to “dt_elem_size ∗ count”.
Here, the “count” represents the number of data elements. The "dt_elem_size" represents the size of
the data element in bytes.

• The UCC_COLL_TYPE_REDUCE_SCATTER first performs an element-wise reduction on the src
buffer and then scatters the result to the dst buffer. The "size" of src buffer is “count ∗ dt_elem_size”,
where dt_elem_size is the number of bytes for the data type element and count is the number of
elements of that datatype. It is the user’s responsibility to ensure that data and the result are equally
divisible among the participants. Assuming that the result is divided into “n” blocks, the ith block is
placed in the receive buffer of endpoint “i”. Like other collectives, for this collective, the “ep” should be
ordered and contiguous.

INPLACE: When INPLACE is set for UCC_COLL_TYPE_REDUCE_SCATTER, UCC_COLL_TYPE_←↩
REDUCE, UCC_COLL_TYPE_ALLREDUCE, UCC_COLL_TYPE_SCATTER, and UCC_COLL_TYPE←↩
_ALLTOALL the receive buffers act as both send and receive buffer.

For UCC_COLL_TYPE_BCAST operation, setting INPLACE flag has no impact.

The "v" Variant Collective Types: The UCC_COLL_TYPE_{ALLTOALLV, SCATTERV, GATHERV,
and REDUCE_SCATTERV} operations add flexibility to their counter parts (.i.e., ALLTOALL, SCATTER,

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

9

GATHER, and REDUCE_SCATTER) in that the location of data for the send and receive are specified by
displacement arrays.

Reduction Types: The reduction operation supported by UCC_{ALLREDUCE, REDUCE, REDUCE_←↩
SCATTER, REDUCE_SCATTERV} operation is defined by the enumeration ucc_reduction_op_t. The
valid datatypes for the reduction is defined by the enumeration ucc_datatype_t.

Ordering: The team can be configured for ordered collective operations or unordered collective operations.
For unordered collectives, the user is required to provide the “tag”, which is an unsigned 64-bit integer.

Synchronized and Non-Synchronized Collectives: In the synchronized collective model, on entry, the partici-
pants cannot read or write to other participants without ensuring all participants have entered the collective
operation. On the exit of the collective operation, the participants may exit after all participants have com-
pleted the reading or writing to the buffers.

In the non-synchronized collective model, on entry, the participants can read or write to other participants.
If the input and output buffers are defined on the team and RMA operations are used for data transfer, it is
the responsibility of the user to ensure the readiness of the buffer. On exit, the participants may exit once the
read and write to the local buffers are completed.

Buffer Ownership: The ownership of input and output buffers are transferred from the user to the library
after invoking the ucc_collective_init routine. On return from the routine, the ownership is transferred back
to the user on ucc_collective_finalize. However, after invoking and returning from ucc_collective_post or
ucc_collective_init_and_post routines, the ownership stays with the library and it is returned to the user,
when the collective is completed.

The table below lists the necessary fields that user must initialize depending on the collective operation type.

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

10

allgather allgatherv allreduce alltoall alltoallv barrier bcast fanin fanout

buffer ˅ ˅ ˅ ˅ ˅

count ˅ ˅ ˅ ˅ ˅

datatype ˅ ˅ ˅ ˅ ˅

mem_type ˅ ˅ ˅ ˅ ˅

buffer ˅

counts ˅

displacements ˅

datatype ˅

mem_type ˅

buffer ˅ ˅ ˅

count ˅ ˅ ˅

datatype ˅ ˅ ˅

mem_type ˅ ˅ ˅

buffer ˅ ˅

counts ˅ ˅

displacements ˅ ˅

datatype ˅ ˅

mem_type ˅ ˅

˅ ˅ ˅

src is

ignored

src is

ignored

src is

ignored

src is

ignored

src is

ignored
N/A N/A N/A N/A

root

INPLACE

comments

info

info_v

SRC

info

info_v

DST

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

11

gather gatherv reduce reduce_scatter reduce_scatterv scatter scatterv

buffer ˅ ˅ ˅ ˅ ˅ ˅

count ˅ ˅ ˅ ˅ ˅ ˅

datatype ˅ ˅ ˅ ˅ ˅ ˅

mem_type ˅ ˅ ˅ ˅ ˅ ˅

buffer ˅

counts ˅

displacements ˅

datatype ˅

mem_type ˅

buffer ˅ ˅ ˅ ˅ ˅

count ˅ ˅ ˅ ˅ ˅

datatype ˅ ˅ ˅ ˅ ˅

mem_type ˅ ˅ ˅ ˅ ˅

buffer ˅ ˅

counts ˅ ˅

displacements ˅

datatype ˅ ˅

mem_type ˅ ˅

˅ ˅ ˅ ˅ ˅

src is

ignored

at root

src is

ignored

at root

src is

ignored

at root

src is ignored src is ignored

dst is

ignored

at root

dst is

ignored

at root

dst only

at root

dst only

at root

dst only

at root

src only

at root

src only

at root

root

INPLACE

comments

info

info_v

SRC

info

info_v

DST

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

Chapter 7

Execution Engine and Events

The execution engine is an execution context that supports event-driven network execution on the CUDA
streams, CPU threads, and DPU threads. It is intended to interact with execution threads that are asyn-
chronous (offloaded collective execution) which can be implemented on GPUs, DPUs, or remote CPUs.

UCC supports triggering collective operations by library-generated and user-generated events. The library
events are generated on posting or completion of operations. The user-generated events include the completion
of compute or communication operations. With a combination of library-generated and user-generated events,
one can build dependencies between compute and collective operations, or between the collective operations.

Besides the execution engine, events are key for event-driven execution. The operations on the execution
engines generate events that are stored internally on the execution engines. The valid events are defined by
ucc_event_type_t. If the underlying hardware doesn't support event-driven execution, the implementations
can implement this with the event queues or lists.

The interaction between the user and library is through the UCC interfaces. ucc_ee_create creates execution
engines. The user or library can generate an event and post it to the execution engines using ucc_ee_set_event
interface. The user can wait on the events with the ucc_ee_wait interface. The user can get the event from
the ee using ucc_ee_get_event interface and acknowledge the event with ucc_ee_ack_event interface. Once
acknowledged, the library destroys the event.

Thread Mode: While in the UCC_THREAD_MULTIPLE mode, the execution engine and operations can be
invoked from multiple threads.

Order: All non-triggered operations posted to the execution engine are executed in-order. However, there are
no ordering guarantees between the execution engines.

7.0.1 Triggered Operations

Triggered operations enable the posting of operations on an event. For triggered operations, the team
should be configured with event-driven execution. The collection operations is defined by the interface
ucc_collective_triggered_post.

The operations are launched on the event. So, there is no order established by the library. If user desires an
order for the triggered operations, the user should provide the tag for matching the collective operations.

7.0.2 Interaction between an User Thread and Event-driven UCC

The figure shows the interaction between application threads and the UCC library configured with event-driven
teams. In this example scenario, we assume that the UCC team are configured with two events queues - one
for post operations and one for completions.

(1) The application initializes the collective operation when it knows the control parameters of the collective
such as buffer addresses, lengths, and participants of the collective. The data need not be ready as it posts

13

the collective operation which will be triggered on an event. For example, the event here is the completion of
compute by the application.

(2) When the application completes the compute, it posts the UCC_EVENT_COMPUTE_COMPLETE event
to the execution engine.

(3) The library thread polls the event queue and triggers the operations that are related to the compute event.

(4) The library posts the UCC_EVENT_POST_COMPLETE event to the event queue.

(5) On completion of the collective operation, the library posts UCC_EVENT_COLLECTIVE_COMPLETE
event to the completion event queue.

App
Communication

Thread

App
Compute
Thread

UCC
Library
Thread

Execution
Engine with Queues

Execute
Collective

UCC_EVENT_COLLECTIVE_COMPLETE

UCC_EVENT_COLLECTIVE_POST

ucc_ee_set_event
(…UCC_EVENT_COMPUTE_COMPLETE)

Compute

ucc_collective_init()

ucc_collective_triggered_post()

1

2

3 4

5

Figure 7.1: UCC Execution Engine and Events

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

Chapter 8

Module Documentation

8.1 Library initialization data-structures

Data Structures

• struct ucc_lib_params
Structure representing the parameters to customize the library. More...

• struct ucc_lib_attr
Structure representing the attributes of the library. More...

Typedefs

• typedef struct ucc_lib_params ucc_lib_params_t
Structure representing the parameters to customize the library.

• typedef struct ucc_lib_attr ucc_lib_attr_t
Structure representing the attributes of the library.

• typedef struct ucc_lib_info ∗ ucc_lib_h
UCC library handle.

• typedef struct ucc_lib_config ∗ ucc_lib_config_h
UCC library configuration handle.

Enumerations

• enum ucc_coll_type_t {
UCC_COLL_TYPE_ALLGATHER = UCC_BIT(0) ,
UCC_COLL_TYPE_ALLGATHERV = UCC_BIT(1) ,
UCC_COLL_TYPE_ALLREDUCE = UCC_BIT(2) ,
UCC_COLL_TYPE_ALLTOALL = UCC_BIT(3) ,
UCC_COLL_TYPE_ALLTOALLV = UCC_BIT(4) ,
UCC_COLL_TYPE_BARRIER = UCC_BIT(5) ,
UCC_COLL_TYPE_BCAST = UCC_BIT(6) ,
UCC_COLL_TYPE_FANIN = UCC_BIT(7) ,
UCC_COLL_TYPE_FANOUT = UCC_BIT(8) ,
UCC_COLL_TYPE_GATHER = UCC_BIT(9) ,
UCC_COLL_TYPE_GATHERV = UCC_BIT(10) ,
UCC_COLL_TYPE_REDUCE = UCC_BIT(11) ,
UCC_COLL_TYPE_REDUCE_SCATTER = UCC_BIT(12) ,
UCC_COLL_TYPE_REDUCE_SCATTERV = UCC_BIT(13) ,
UCC_COLL_TYPE_SCATTER = UCC_BIT(14) ,

8.1 Library initialization data-structures 15

UCC_COLL_TYPE_SCATTERV = UCC_BIT(15) ,
UCC_COLL_TYPE_LAST }

Enumeration representing the collective operations.
• enum ucc_reduction_op_t {

UCC_OP_SUM ,
UCC_OP_PROD ,
UCC_OP_MAX ,
UCC_OP_MIN ,
UCC_OP_LAND ,
UCC_OP_LOR ,
UCC_OP_LXOR ,
UCC_OP_BAND ,
UCC_OP_BOR ,
UCC_OP_BXOR ,
UCC_OP_MAXLOC ,
UCC_OP_MINLOC ,
UCC_OP_AVG ,
UCC_OP_LAST }

Enumeration representing the UCC reduction operations.
• enum ucc_thread_mode_t {

UCC_THREAD_SINGLE = 0 ,
UCC_THREAD_FUNNELED = 1 ,
UCC_THREAD_MULTIPLE = 2 }

Enumeration representing the UCC library's thread model.
• enum ucc_coll_sync_type_t {

UCC_NO_SYNC_COLLECTIVES = 0 ,
UCC_SYNC_COLLECTIVES = 1 }

Enumeration representing the collective synchronization model.
• enum ucc_lib_params_field {

UCC_LIB_PARAM_FIELD_THREAD_MODE = UCC_BIT(0) ,
UCC_LIB_PARAM_FIELD_COLL_TYPES = UCC_BIT(1) ,
UCC_LIB_PARAM_FIELD_REDUCTION_TYPES = UCC_BIT(2) ,
UCC_LIB_PARAM_FIELD_SYNC_TYPE = UCC_BIT(3) }

UCC library initialization parameters.
• enum ucc_lib_attr_field {

UCC_LIB_ATTR_FIELD_THREAD_MODE = UCC_BIT(0) ,
UCC_LIB_ATTR_FIELD_COLL_TYPES = UCC_BIT(1) ,
UCC_LIB_ATTR_FIELD_REDUCTION_TYPES = UCC_BIT(2) ,
UCC_LIB_ATTR_FIELD_SYNC_TYPE = UCC_BIT(3) }

8.1.1 Detailed Description

Unified Collective Communications (UCC) Library Specification

UCC is a collective communication operations API and library that is flexible, complete, and feature-rich for
current and emerging programming models and runtimes.

Library initialization parameters and data-structures

8.1.2 Data Structure Documentation

8.1.2.1 struct ucc_lib_params

Description

ucc_lib_params_t defines the parameters that can be used to customize the library. The bits in "mask" bit
array is defined by ucc_lib_params_field, which correspond to fields in structure ucc_lib_params_t. The

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.1 Library initialization data-structures 16

valid fields of the structure is specified by the setting the bit to "1" in the bit-array "mask". When bits
corresponding to the fields is not set, the fields are not defined.

Data Fields

uint64_t mask

ucc_thread_mode_t thread_mode

uint64_t coll_types

uint64_t reduction_types

ucc_coll_sync_type_t sync_type

8.1.2.2 struct ucc_lib_attr

Description

ucc_lib_attr_t defines the attributes of the library. The bits in "mask" bit array is defined by
ucc_lib_attr_field, which correspond to fields in structure ucc_lib_attr_t. The valid fields of the structure
is specified by the setting the bit to "1" in the bit-array "mask". When bits corresponding to the fields is not
set, the fields are not defined.

Data Fields

uint64_t mask

ucc_thread_mode_t thread_mode

uint64_t coll_types

uint64_t reduction_types

ucc_coll_sync_type_t sync_type

8.1.3 Typedef Documentation

8.1.3.1 ucc_lib_params_t

typedef struct ucc_lib_params ucc_lib_params_t

Description

ucc_lib_params_t defines the parameters that can be used to customize the library. The bits in "mask" bit
array is defined by ucc_lib_params_field, which correspond to fields in structure ucc_lib_params_t. The
valid fields of the structure is specified by the setting the bit to "1" in the bit-array "mask". When bits
corresponding to the fields is not set, the fields are not defined.

8.1.3.2 ucc_lib_attr_t

typedef struct ucc_lib_attr ucc_lib_attr_t

Description

ucc_lib_attr_t defines the attributes of the library. The bits in "mask" bit array is defined by
ucc_lib_attr_field, which correspond to fields in structure ucc_lib_attr_t. The valid fields of the structure

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.1 Library initialization data-structures 17

is specified by the setting the bit to "1" in the bit-array "mask". When bits corresponding to the fields is not
set, the fields are not defined.

8.1.3.3 ucc_lib_h

typedef struct ucc_lib_info∗ ucc_lib_h

The ucc library handle is an opaque handle created by the library. It abstracts the collective library. It holds
the global information and resources associated with the library. The library handle cannot be passed from
one library instance to another.

8.1.3.4 ucc_lib_config_h

typedef struct ucc_lib_config∗ ucc_lib_config_h

8.1.4 Enumeration Type Documentation

8.1.4.1 ucc_coll_type_t

enum ucc_coll_type_t
Library initialization and finalize
Description
ucc_coll_type_t represents the collective operations supported by the UCC library. The exact set of sup-
ported collective operations depends on UCC build flags, runtime configuration and available communication
transports.

Enumerator

UCC_COLL_TYPE_ALLGATHER

UCC_COLL_TYPE_ALLGATHERV

UCC_COLL_TYPE_ALLREDUCE

UCC_COLL_TYPE_ALLTOALL

UCC_COLL_TYPE_ALLTOALLV

UCC_COLL_TYPE_BARRIER

UCC_COLL_TYPE_BCAST

UCC_COLL_TYPE_FANIN

UCC_COLL_TYPE_FANOUT

UCC_COLL_TYPE_GATHER

UCC_COLL_TYPE_GATHERV

UCC_COLL_TYPE_REDUCE

UCC_COLL_TYPE_REDUCE_SCATTER

UCC_COLL_TYPE_REDUCE_SCATTERV

UCC_COLL_TYPE_SCATTER

UCC_COLL_TYPE_SCATTERV

UCC_COLL_TYPE_LAST

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.1 Library initialization data-structures 18

8.1.4.2 ucc_reduction_op_t

enum ucc_reduction_op_t

Description
ucc_reduction_op_t represents the UCC reduction operations. It is used by the library initialization routine
ucc_init to request the operations expected by the user. It is used by the ucc_lib_attr_t to communicate
the operations supported by the library.

Enumerator

UCC_OP_SUM

UCC_OP_PROD

UCC_OP_MAX

UCC_OP_MIN

UCC_OP_LAND

UCC_OP_LOR

UCC_OP_LXOR

UCC_OP_BAND

UCC_OP_BOR

UCC_OP_BXOR

UCC_OP_MAXLOC

UCC_OP_MINLOC

UCC_OP_AVG

UCC_OP_LAST

8.1.4.3 ucc_thread_mode_t

enum ucc_thread_mode_t

Description
ucc_thread_mode_t is used to initialize the UCC library’s thread mode. The UCC library can be configured
in three thread modes UCC_THREAD_SINGLE, UCC_THREAD_FUNNELED, and UCC_LIB_THREAD←↩
_MULTIPLE. In the UCC_THREAD_SINGLE mode, the user program must not be multithreaded. In the
UCC_THREAD_FUNNELED mode, the user program may be multithreaded. However, all UCC interfaces
should be invoked from the same thread. In the UCC_THREAD_MULTIPLE mode, the user program can
be multithreaded and any thread may invoke the UCC operations.

Enumerator

UCC_THREAD_SINGLE Single-threaded library model

UCC_THREAD_FUNNELED Funnel thread model

UCC_THREAD_MULTIPLE Multithread library model

8.1.4.4 ucc_coll_sync_type_t

enum ucc_coll_sync_type_t

Description
ucc_coll_sync_type_t represents the collective synchronization models. Currently, it supports two synchro-
nization models synchronous and non-synchronous collective models. In the synchronous collective model,
the collective communication is not started until participants have not entered the collective operation, and
it is not completed until all participants have not completed the collective. In the non-synchronous collective

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.2 Datatypes data-structures and functions 19

model, collective communication can be started as soon as the participant enters the collective operation and
is completed as soon as it completes locally.

Enumerator

UCC_NO_SYNC_COLLECTIVES Non-synchronous collectives

UCC_SYNC_COLLECTIVES Synchronous collectives

8.1.4.5 ucc_lib_params_field

enum ucc_lib_params_field

Enumerator

UCC_LIB_PARAM_FIELD_THREAD_MODE

UCC_LIB_PARAM_FIELD_COLL_TYPES

UCC_LIB_PARAM_FIELD_REDUCTION_TYPES

UCC_LIB_PARAM_FIELD_SYNC_TYPE

8.1.4.6 ucc_lib_attr_field

enum ucc_lib_attr_field

Enumerator

UCC_LIB_ATTR_FIELD_THREAD_MODE

UCC_LIB_ATTR_FIELD_COLL_TYPES

UCC_LIB_ATTR_FIELD_REDUCTION_TYPES

UCC_LIB_ATTR_FIELD_SYNC_TYPE

8.2 Datatypes data-structures and functions

Data Structures

• struct ucc_reduce_cb_params
Descriptor of user-defined reduction callback. More...

• struct ucc_generic_dt_ops
UCC generic data type descriptor.

• struct ucc_generic_dt_ops.reduce
User-defined reduction callback.

Typedefs

• typedef uint64_t ucc_datatype_t
Enumeration representing the UCC library's datatype.

• typedef struct ucc_reduce_cb_params ucc_reduce_cb_params_t
Descriptor of user-defined reduction callback.

• typedef struct ucc_generic_dt_ops ucc_generic_dt_ops_t
UCC generic data type descriptor.

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.2 Datatypes data-structures and functions 20

Enumerations

• enum ucc_generic_dt_ops_field { UCC_GENERIC_DT_OPS_FIELD_FLAGS = UCC_BIT(0) }
• enum ucc_generic_dt_ops_flags_t {

UCC_GENERIC_DT_OPS_FLAG_CONTIG = UCC_BIT(0) ,
UCC_GENERIC_DT_OPS_FLAG_REDUCE = UCC_BIT(1) }

Flags that can be specified for generic datatype.

Functions

• ucc_status_t ucc_dt_create_generic (const ucc_generic_dt_ops_t ∗ops, void ∗context,
ucc_datatype_t ∗datatype_p)

Create a generic datatype.
• void ucc_dt_destroy (ucc_datatype_t datatype)

Destroy generic datatype.

Variables

• void ∗(∗ ucc_generic_dt_ops::start_pack)(void ∗context, const void ∗buffer, size_t count)
Start a packing request.

• void ∗(∗ ucc_generic_dt_ops::start_unpack)(void ∗context, void ∗buffer, size_t count)
Start an unpacking request.

• size_t(∗ ucc_generic_dt_ops::packed_size)(void ∗state)
Get the total size of packed data.

• size_t(∗ ucc_generic_dt_ops::pack)(void ∗state, size_t offset, void ∗dest, size_t max_length)
Pack data.

• ucc_status_t(∗ ucc_generic_dt_ops::unpack)(void ∗state, size_t offset, const void ∗src, size_←↩
t length)

Unpack data.
• void(∗ ucc_generic_dt_ops::finish)(void ∗state)

Finish packing/unpacking.
• struct {

ucc_status_t(∗ cb)(const ucc_reduce_cb_params_t ∗params)
void ∗ cb_ctx
} ucc_generic_dt_ops::reduce

User-defined reduction callback.

8.2.1 Detailed Description

Datatypes data-structures and functions

8.2.2 Data Structure Documentation

8.2.2.1 struct ucc_reduce_cb_params

This structure is the argument to the reduce.cb callback. It must implement the reduction of n_vectors + 1
data vectors each containing "count" elements. First vector is "src1", other n_vectors have start address v_j
= src2 + count ∗ dt_extent ∗ stride ∗ j. The result is stored in dst, so that dst[i] = src1[i] + v0[i] + v1[i] +
... +v_nvectors[i], for i in [0:count), where "+" represents user-defined reduction of 2 elements

Data Fields

uint64_t mask

void ∗ src1
void ∗ src2

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.2 Datatypes data-structures and functions 21

Data Fields

void ∗ dst
size_t n_vectors

size_t count

size_t stride

ucc_dt_generic_t ∗ dt

void ∗ cb_ctx

8.2.3 Typedef Documentation

8.2.3.1 ucc_datatype_t

typedef uint64_t ucc_datatype_t

Description
ucc_datatype_t represents the datatypes supported by the UCC library’s collective and reduction operations.
The predefined operations are signed and unsigned integers of various sizes, float 16, 32, and 64, and user-
defined datatypes. User-defined datatypes are created using ucc_dt_create_generic interface and can support
user-defined reduction operations. Predefined reduction operations can be used only with predefined datatypes.

8.2.3.2 ucc_reduce_cb_params_t

typedef struct ucc_reduce_cb_params ucc_reduce_cb_params_t

This structure is the argument to the reduce.cb callback. It must implement the reduction of n_vectors + 1
data vectors each containing "count" elements. First vector is "src1", other n_vectors have start address v_j
= src2 + count ∗ dt_extent ∗ stride ∗ j. The result is stored in dst, so that dst[i] = src1[i] + v0[i] + v1[i] +
... +v_nvectors[i], for i in [0:count), where "+" represents user-defined reduction of 2 elements

8.2.3.3 ucc_generic_dt_ops_t

typedef struct ucc_generic_dt_ops ucc_generic_dt_ops_t

This structure provides a generic datatype descriptor that is used to create user-defined datatypes.

8.2.4 Enumeration Type Documentation

8.2.4.1 ucc_generic_dt_ops_field

enum ucc_generic_dt_ops_field

Enumerator

UCC_GENERIC_DT_OPS_FIELD_FLAGS

8.2.4.2 ucc_generic_dt_ops_flags_t

enum ucc_generic_dt_ops_flags_t

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.2 Datatypes data-structures and functions 22

Enumerator

UCC_GENERIC_DT_OPS_FLAG_CONTIG If set, the created datatype represents a contiguous
memory region with the size specified in
ucc_generic_dt_ops::contig_size field of
ucc_generic_dt_ops

UCC_GENERIC_DT_OPS_FLAG_REDUCE If set, the created datatype has user-defined reduction
operation associated with it. reduce.cb and reduce.ctx
fields of ucc_generic_dt_ops must be initialized.
Collective operations that involve reduction (allreduce,
reduce, reduce_scatter/v) can use user-defined
data-types only when this flag is set.

8.2.5 Function Documentation

8.2.5.1 ucc_dt_create_generic()

ucc_status_t ucc_dt_create_generic (

const ucc_generic_dt_ops_t ∗ ops,

void ∗ context,

ucc_datatype_t ∗ datatype_p)

This routine creates a generic datatype object. The generic datatype is described by the ops object which
provides a table of routines defining the operations for generic datatype manipulation. Typically, generic
datatypes are used for integration with datatype engines provided with MPI implementations (MPICH, Open
MPI, etc). The application is responsible for releasing the datatype_p object using ucc_dt_destroy() routine.

Parameters

in ops Generic datatype function table as defined by ucc_generic_dt_ops_t .

in context Application defined context passed to this routine. The context is passed as a
parameter to the routines in the ops table.

out datatype←↩
_p

A pointer to datatype object.

Returns

Error code as defined by ucc_status_t

8.2.5.2 ucc_dt_destroy()

void ucc_dt_destroy (

ucc_datatype_t datatype)

8.2.6 Variable Documentation

8.2.6.1 start_pack

void ∗(∗ ucc_generic_dt_ops::start_pack) (void ∗context, const void ∗buffer, size_t count)

The pointer refers to application defined start-to-pack routine.

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.2 Datatypes data-structures and functions 23

Parameters

in context User-defined context.
in buffer Buffer to pack.
in count Number of elements to pack into the buffer.

Returns

A custom state that is passed to the subsequent pack() routine.

8.2.6.2 start_unpack

void ∗(∗ ucc_generic_dt_ops::start_unpack) (void ∗context, void ∗buffer, size_t count)

The pointer refers to application defined start-to-unpack routine.

Parameters

in context User-defined context.
in buffer Buffer to unpack to.
in count Number of elements to unpack in the buffer.

Returns

A custom state that is passed later to the subsequent unpack() routine.

8.2.6.3 packed_size

size_t(∗ ucc_generic_dt_ops::packed_size) (void ∗state)
The pointer refers to user defined routine that returns the size of data in a packed format.

Parameters

in state State as returned by start_pack() routine.

Returns

The size of the data in a packed form.

8.2.6.4 pack

size_t(∗ ucc_generic_dt_ops::pack) (void ∗state, size_t offset, void ∗dest, size_t max_length)

The pointer refers to application defined pack routine.

Parameters

in state State as returned by start_pack() routine.

in offset Virtual offset in the output stream.
in dest Destination buffer to pack the data.
in max_length Maximum length to pack.

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.2 Datatypes data-structures and functions 24

Returns

The size of the data that was written to the destination buffer. Must be less than or equal to max_length.

8.2.6.5 unpack

ucc_status_t(∗ ucc_generic_dt_ops::unpack) (void ∗state, size_t offset, const void ∗src, size←↩

_t length)

The pointer refers to application defined unpack routine.

Parameters

in state State as returned by start_unpack() routine.

in offset Virtual offset in the input stream.
in src Source to unpack the data from.
in length Length to unpack.

Returns

UCC_OK or an error if unpacking failed.

8.2.6.6 finish

void(∗ ucc_generic_dt_ops::finish) (void ∗state)
The pointer refers to application defined finish routine.

Parameters

in state State as returned by start_pack() and start_unpack() routines.

8.2.6.7

struct { ... } ucc_generic_dt_ops::reduce

The pointer refers to user-defined reduction routine.

Parameters

in params reduction descriptor

8.2.6.8

ucc_status_t(∗ { ... } ::cb) (const ucc_reduce_cb_params_t ∗params)

8.2.6.9

void∗ { ... } ::cb_ctx

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.3 Library initialization and finalization routines 25

8.3 Library initialization and finalization routines

Functions

• ucc_status_t ucc_lib_config_read (const char ∗env_prefix, const char ∗filename, ucc_lib_config_h
∗config)

The ucc_lib_config_read routine provides a method to read library configuration from the environment and
create configuration descriptor.

• void ucc_lib_config_release (ucc_lib_config_h config)
The ucc_lib_config_release routine releases the configuration descriptor.

• void ucc_lib_config_print (const ucc_lib_config_h config, FILE ∗stream, const char ∗title,
ucc_config_print_flags_t print_flags)

The ucc_lib_config_print routine prints the configuration information.
• ucc_status_t ucc_lib_config_modify (ucc_lib_config_h config, const char ∗name, const char ∗value)

The ucc_lib_config_modify routine modifies the runtime configuration as described by the descriptor.
• void ucc_get_version (unsigned ∗major_version, unsigned ∗minor_version, unsigned ∗release_number)

Get UCC library version.
• const char ∗ ucc_get_version_string (void)

Get UCC library version as a string.
• static ucc_status_t ucc_init (const ucc_lib_params_t ∗params, const ucc_lib_config_h config,

ucc_lib_h ∗lib_p)
The ucc_init initializes the UCC library.

• ucc_status_t ucc_finalize (ucc_lib_h lib_p)
The ucc_finalize routine finalizes the UCC library.

• ucc_status_t ucc_lib_get_attr (ucc_lib_h lib_p, ucc_lib_attr_t ∗lib_attr)
The ucc_lib_get_attr routine queries the library attributes.

8.3.1 Detailed Description

Library initialization and finalization routines

8.3.2 Function Documentation

8.3.2.1 ucc_lib_config_read()

ucc_status_t ucc_lib_config_read (

const char ∗ env_prefix,

const char ∗ filename,

ucc_lib_config_h ∗ config)

Parameters

out env_prefix If not NULL, the routine searches for the environment variables with the prefix
UCC_<env_prefix>. Otherwise, the routines search for the environment variables
that start with the prefix @ UCC_.

in filename If not NULL, read configuration values from the file defined by filename. If the file
does not exist, it will be ignored and no error will be reported to the user.

out config Pointer to configuration descriptor as defined by ucc_lib_config_h.

Description
ucc_lib_config_read allocates the ucc_lib_config_h handle and fetches the configuration values from the
run-time environment. The run-time environment supported are environment variables or a configuration file.

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.3 Library initialization and finalization routines 26

Returns

Error code as defined by ucc_status_t

8.3.2.2 ucc_lib_config_release()

void ucc_lib_config_release (

ucc_lib_config_h config)

Parameters

in config Pointer to the configuration descriptor to be released. Configuration descriptor as defined by
ucc_lib_config_h.

Description
The routine releases the configuration descriptor that was allocated through
ucc_lib_config_read() routine.

8.3.2.3 ucc_lib_config_print()

void ucc_lib_config_print (

const ucc_lib_config_h config,

FILE ∗ stream,

const char ∗ title,

ucc_config_print_flags_t print_flags)

Parameters

in config ucc_lib_config_h "Configuration descriptor" to print.

in stream Output stream to print the configuration to.
in title Configuration title to print.
in print_flags Flags that control various printing options.

Description
The routine prints the configuration information that is stored in ucc_lib_config_h "configuration" descriptor.

8.3.2.4 ucc_lib_config_modify()

ucc_status_t ucc_lib_config_modify (

ucc_lib_config_h config,

const char ∗ name,

const char ∗ value)

Parameters

in config Pointer to the configuration descriptor to be modified
in name Configuration variable to be modified
in value Configuration value to set

Description
The ucc_lib_config_modify routine sets the value of identifier "name" to "value".

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.3 Library initialization and finalization routines 27

Returns

Error code as defined by ucc_status_t

8.3.2.5 ucc_get_version()

void ucc_get_version (

unsigned ∗ major_version,

unsigned ∗ minor_version,

unsigned ∗ release_number)

This routine returns the UCC library version.

Parameters

out major_version Filled with library major version.

out minor_version Filled with library minor version.

out release_number Filled with library release number.

8.3.2.6 ucc_get_version_string()

const char ∗ ucc_get_version_string (

void)

This routine returns the UCC library version as a string which consists of: "major.minor.release".

8.3.2.7 ucc_init()

static ucc_status_t ucc_init (

const ucc_lib_params_t ∗ params,

const ucc_lib_config_h config,

ucc_lib_h ∗ lib_p) [inline], [static]

Parameters

in params User provided parameters to customize the library functionality

in config UCC configuration descriptor allocated through ucc_config_read() routine.

out lib_p UCC library handle

Description
A local operation to initialize and allocate the resources for the UCC operations. The parameters passed
using the ucc_lib_params_t and ucc_lib_config_h structures will customize and select the functionality of
the UCC library. The library can be customized for its interaction with the user threads, types of collective
operations, and reductions supported. On success, the library object will be created and ucc_status_t will
return UCC_OK. On error, the library object will not be created and corresponding error code as defined by
ucc_status_t is returned.

Returns

Error code as defined by ucc_status_t

8.3.2.8 ucc_finalize()

ucc_status_t ucc_finalize (

ucc_lib_h lib_p)

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.4 Context abstraction data-structures 28

Parameters

in lib←↩
_p

Handle to ucc_lib_h "UCC library".

Description
A local operation to release the resources and cleanup. All participants that invoked ucc_init should call this
routine.

Returns

Error code as defined by ucc_status_t

8.3.2.9 ucc_lib_get_attr()

ucc_status_t ucc_lib_get_attr (

ucc_lib_h lib_p,

ucc_lib_attr_t ∗ lib_attr)

Parameters

out lib_attr Library attributes

in lib_p Input library object

Description
A query operation to get the attributes of the library object. The attributes are library configured values and
reflect the choices made by the library implementation.

Returns

Error code as defined by ucc_status_t

8.4 Context abstraction data-structures

Data Structures

• struct ucc_oob_coll
OOB collective operation for creating the context.

• struct ucc_mem_map
• struct ucc_mem_map_params
• struct ucc_context_params

Structure representing the parameters to customize the context. More...
• struct ucc_context_attr

Structure representing context attributes. More...

Typedefs

• typedef struct ucc_oob_coll ucc_oob_coll_t
OOB collective operation for creating the context.

• typedef struct ucc_mem_map ucc_mem_map_t
• typedef struct ucc_mem_map_params ucc_mem_map_params_t
• typedef struct ucc_context_params ucc_context_params_t

Structure representing the parameters to customize the context.
• typedef struct ucc_context_attr ucc_context_attr_t

Structure representing context attributes.

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.4 Context abstraction data-structures 29

• typedef struct ucc_context ∗ ucc_context_h
UCC context.

• typedef struct ucc_context_config ∗ ucc_context_config_h
UCC context configuration handle.

Enumerations

• enum ucc_context_type_t {
UCC_CONTEXT_EXCLUSIVE = 0 ,
UCC_CONTEXT_SHARED }

• enum ucc_context_params_field {
UCC_CONTEXT_PARAM_FIELD_TYPE = UCC_BIT(0) ,
UCC_CONTEXT_PARAM_FIELD_SYNC_TYPE = UCC_BIT(1) ,
UCC_CONTEXT_PARAM_FIELD_OOB = UCC_BIT(2) ,
UCC_CONTEXT_PARAM_FIELD_ID = UCC_BIT(3) ,
UCC_CONTEXT_PARAM_FIELD_MEM_PARAMS = UCC_BIT(4) }

• enum ucc_context_attr_field {
UCC_CONTEXT_ATTR_FIELD_TYPE = UCC_BIT(0) ,
UCC_CONTEXT_ATTR_FIELD_SYNC_TYPE = UCC_BIT(1) ,
UCC_CONTEXT_ATTR_FIELD_CTX_ADDR = UCC_BIT(2) ,
UCC_CONTEXT_ATTR_FIELD_CTX_ADDR_LEN = UCC_BIT(3) ,
UCC_CONTEXT_ATTR_FIELD_WORK_BUFFER_SIZE = UCC_BIT(4) }

8.4.1 Detailed Description

Data-structures associated with context creation and management routines

8.4.2 Data Structure Documentation

8.4.2.1 struct ucc_mem_map

Data Fields

void ∗ address the address of a buffer to be attached to a UCC context
size_t len the length of the buffer

8.4.2.2 struct ucc_mem_map_params

Data Fields

ucc_mem_map_t ∗ segments array of ucc_mem_map elements

uint64_t n_segments the number of ucc_mem_map elements

8.4.2.3 struct ucc_context_params

Description
ucc_context_params_t defines the parameters that can be used to customize the context. The "mask"
bit array fields are defined by ucc_context_params_field. The bits in "mask" bit array is defined by
ucc_context_params_field, which correspond to fields in structure ucc_context_params_t. The valid fields
of the structure is specified by the setting the bit to "1" in the bit-array "mask". When bits corresponding to
the fields is not set, the fields are not defined.

Data Fields

uint64_t mask
ucc_context_type_t type

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.4 Context abstraction data-structures 30

Data Fields

ucc_coll_sync_type_t sync_type

ucc_context_oob_coll_t oob

uint64_t ctx_id
ucc_mem_map_params_t mem_params

8.4.2.4 struct ucc_context_attr

Description
ucc_context_attr_t defines the attributes of the context. The bits in "mask" bit array is defined by
ucc_context_attr_field, which correspond to fields in structure ucc_context_attr_t. The valid fields of
the structure is specified by the setting the bit to "1" in the bit-array "mask". When bits corresponding to
the fields is not set, the fields are not defined.

Data Fields

uint64_t mask
ucc_context_type_t type

ucc_coll_sync_type_t sync_type

ucc_context_addr_h ctx_addr

ucc_context_addr_len_t ctx_addr_len

uint64_t global_work_buffer_size

8.4.3 Typedef Documentation

8.4.3.1 ucc_oob_coll_t

typedef struct ucc_oob_coll ucc_oob_coll_t

8.4.3.2 ucc_mem_map_t

typedef struct ucc_mem_map ucc_mem_map_t

8.4.3.3 ucc_mem_map_params_t

typedef struct ucc_mem_map_params ucc_mem_map_params_t

8.4.3.4 ucc_context_params_t

typedef struct ucc_context_params ucc_context_params_t

Description
ucc_context_params_t defines the parameters that can be used to customize the context. The "mask"
bit array fields are defined by ucc_context_params_field. The bits in "mask" bit array is defined by
ucc_context_params_field, which correspond to fields in structure ucc_context_params_t. The valid fields
of the structure is specified by the setting the bit to "1" in the bit-array "mask". When bits corresponding to
the fields is not set, the fields are not defined.

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.4 Context abstraction data-structures 31

8.4.3.5 ucc_context_attr_t

typedef struct ucc_context_attr ucc_context_attr_t

Description
ucc_context_attr_t defines the attributes of the context. The bits in "mask" bit array is defined by
ucc_context_attr_field, which correspond to fields in structure ucc_context_attr_t. The valid fields of
the structure is specified by the setting the bit to "1" in the bit-array "mask". When bits corresponding to
the fields is not set, the fields are not defined.

8.4.3.6 ucc_context_h

typedef struct ucc_context∗ ucc_context_h

The UCC context is an opaque handle to abstract the network resources for collective operations. The network
resources could be either software or hardware. Based on the type of the context, the resources can be shared
or either be exclusively used. The UCC context is required but not sufficient to execute a collective operation.

8.4.3.7 ucc_context_config_h

typedef struct ucc_context_config∗ ucc_context_config_h

8.4.4 Enumeration Type Documentation

8.4.4.1 ucc_context_type_t

enum ucc_context_type_t

Enumerator

UCC_CONTEXT_EXCLUSIVE

UCC_CONTEXT_SHARED

8.4.4.2 ucc_context_params_field

enum ucc_context_params_field

Enumerator

UCC_CONTEXT_PARAM_FIELD_TYPE

UCC_CONTEXT_PARAM_FIELD_SYNC_TYPE

UCC_CONTEXT_PARAM_FIELD_OOB

UCC_CONTEXT_PARAM_FIELD_ID

UCC_CONTEXT_PARAM_FIELD_MEM_PARAMS

8.4.4.3 ucc_context_attr_field

enum ucc_context_attr_field

Enumerator

UCC_CONTEXT_ATTR_FIELD_TYPE

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.5 Context abstraction routines 32

Enumerator

UCC_CONTEXT_ATTR_FIELD_SYNC_TYPE

UCC_CONTEXT_ATTR_FIELD_CTX_ADDR

UCC_CONTEXT_ATTR_FIELD_CTX_ADDR_LEN

UCC_CONTEXT_ATTR_FIELD_WORK_BUFFER_SIZE

8.5 Context abstraction routines

Functions

• ucc_status_t ucc_context_config_read (ucc_lib_h lib_handle, const char ∗filename, ucc_context_config_h
∗config)

Routine reads the configuration information for contexts from the runtime enviornment and creates the
configuration descriptor.

• void ucc_context_config_release (ucc_context_config_h config)
The ucc_context_config_release routine releases the configuration descriptor.

• void ucc_context_config_print (const ucc_context_config_h config, FILE ∗stream, const char ∗title,
ucc_config_print_flags_t print_flags)

The ucc_context_config_print routine prints the configuration information.
• ucc_status_t ucc_context_config_modify (ucc_context_config_h config, const char ∗component,

const char ∗name, const char ∗value)
The ucc_context_config_modify routine modifies the runtime configuration of UCC context (optionally for
a given CLS)

• ucc_status_t ucc_context_create (ucc_lib_h lib_handle, const ucc_context_params_t ∗params,
const ucc_context_config_h config, ucc_context_h ∗context)

The ucc_context_create routine creates the context handle.
• ucc_status_t ucc_context_progress (ucc_context_h context)

The ucc_context_progress routine progresses the operations on the context handle.
• ucc_status_t ucc_context_destroy (ucc_context_h context)

The ucc_context_destroy routine frees the context handle.
• ucc_status_t ucc_context_get_attr (ucc_context_h context, ucc_context_attr_t ∗context_attr)

The routine queries the attributes of the context handle.

8.5.1 Detailed Description

Context create and management routines

8.5.2 Function Documentation

8.5.2.1 ucc_context_config_read()

ucc_status_t ucc_context_config_read (

ucc_lib_h lib_handle,

const char ∗ filename,

ucc_context_config_h ∗ config)

Parameters

in lib_handle Library handle

in filename If not NULL, read configuration values from the file defined by filename. If the file
does not exist, it will be ignored and no error will be reported to the user.

out config Pointer to configuration descriptor as defined by ucc_context_config_h.
c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.5 Context abstraction routines 33

Description
ucc_context_config_read allocates the ucc_lib_config_h handle and fetches the configuration values from
the run-time environment. The run-time environment supported are environment variables or a configuration
file. It uses the env_prefix from ucc_lib_config_read. If env_prefix is not NULL, the routine searches for the
environment variables with the prefix UCC_<env_prefix>. Otherwise, the routines search for the environment
variables that start with the prefix @ UCC_.

Returns

Error code as defined by ucc_status_t

8.5.2.2 ucc_context_config_release()

void ucc_context_config_release (

ucc_context_config_h config)

Parameters

in config Pointer to the configuration descriptor to be released. Configuration descriptor as defined by
ucc_context_config_h

Description
The routine releases the configuration descriptor that was allocated through ucc_context_config_read()
routine.

8.5.2.3 ucc_context_config_print()

void ucc_context_config_print (

const ucc_context_config_h config,

FILE ∗ stream,

const char ∗ title,

ucc_config_print_flags_t print_flags)

Parameters

in config ucc_context_config_h "Configuration descriptor" to print.

in stream Output stream to print the configuration to.
in title Configuration title to print.
in print_flags Flags that control various printing options.

Description
The routine prints the configuration information that is stored in ucc_context_config_h "configuration"
descriptor.

8.5.2.4 ucc_context_config_modify()

ucc_status_t ucc_context_config_modify (

ucc_context_config_h config,

const char ∗ component,

const char ∗ name,

const char ∗ value)

Parameters

in config Pointer to the configuration descriptor to be modified

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.5 Context abstraction routines 34

Parameters

in component CL/TL component (e.g. "tl/ucp" or "cl/basic") or NULL. If NULL then core
context config is modified.

in name Configuration variable to be modified
in value Configuration value to set

Description
The ucc_context_config_modify routine sets the value of identifier "name" to "value" for a specified CL.

Returns

Error code as defined by ucc_status_t

8.5.2.5 ucc_context_create()

ucc_status_t ucc_context_create (

ucc_lib_h lib_handle,

const ucc_context_params_t ∗ params,

const ucc_context_config_h config,

ucc_context_h ∗ context)

Parameters

in lib_handle Library handle

in params Customizations for the communication context
in config Configuration for the communication context to read from environment
out context Pointer to the newly created communication context

Description
The ucc_context_create creates the context and ucc_context_destroy releases the resources and destroys
the context state. The creation of context does not necessarily indicate its readiness to be used for collective or
other group operations. On success, the context handle will be created and ucc_status_t will return UCC_←↩
OK. On error, the context object will not be created and corresponding error code as defined by ucc_status_t
is returned.

Returns

Error code as defined by ucc_status_t

8.5.2.6 ucc_context_progress()

ucc_status_t ucc_context_progress (

ucc_context_h context)

Parameters

in context Communication context handle to be progressed

Description
The ucc_context_progress routine progresses the operations on the content handle. It does not block for
lack of resources or communication.

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.6 Team abstraction data-structures 35

Returns

Error code as defined by ucc_status_t

8.5.2.7 ucc_context_destroy()

ucc_status_t ucc_context_destroy (

ucc_context_h context)

Parameters

in context Communication context handle to be released

Description
ucc_context_destroy routine releases the resources associated with the handle context. All teams associated
with the team should be released before this. It is invalid to associate any team with this handle after the
routine is called.

Returns

Error code as defined by ucc_status_t

8.5.2.8 ucc_context_get_attr()

ucc_status_t ucc_context_get_attr (

ucc_context_h context,

ucc_context_attr_t ∗ context_attr)

Parameters

in context Communication context
out context_attr Attributes of the communication context

Description
ucc_context_get_attr routine queries the context handle attributes described by ucc_context_attr.

Returns

Error code as defined by ucc_status_t

8.6 Team abstraction data-structures

Data Structures

• struct ucc_team_p2p_conn
• struct ucc_ep_map_strided
• struct ucc_ep_map_array
• struct ucc_ep_map_cb
• struct ucc_ep_map_t
• struct ucc_team_params

Structure representing the parameters to customize the team. More...
• struct ucc_team_attr

Structure representing the team attributes. More...
• union ucc_ep_map_t.__unnamed2__

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.6 Team abstraction data-structures 36

Typedefs

• typedef struct ucc_team_p2p_conn ucc_team_p2p_conn_t
• typedef struct ucc_ep_map_t ucc_ep_map_t
• typedef struct ucc_team_params ucc_team_params_t

Structure representing the parameters to customize the team.
• typedef struct ucc_team_attr ucc_team_attr_t

Structure representing the team attributes.
• typedef struct ucc_team ∗ ucc_team_h

UCC team handle.
• typedef void ∗ ucc_p2p_conn_t
• typedef void ∗ ucc_context_addr_h
• typedef size_t ucc_context_addr_len_t

Enumerations

• enum ucc_team_params_field {
UCC_TEAM_PARAM_FIELD_ORDERING = UCC_BIT(0) ,
UCC_TEAM_PARAM_FIELD_OUTSTANDING_COLLS = UCC_BIT(1) ,
UCC_TEAM_PARAM_FIELD_EP = UCC_BIT(2) ,
UCC_TEAM_PARAM_FIELD_EP_LIST = UCC_BIT(3) ,
UCC_TEAM_PARAM_FIELD_EP_RANGE = UCC_BIT(4) ,
UCC_TEAM_PARAM_FIELD_TEAM_SIZE = UCC_BIT(5) ,
UCC_TEAM_PARAM_FIELD_SYNC_TYPE = UCC_BIT(6) ,
UCC_TEAM_PARAM_FIELD_OOB = UCC_BIT(7) ,
UCC_TEAM_PARAM_FIELD_P2P_CONN = UCC_BIT(8) ,
UCC_TEAM_PARAM_FIELD_MEM_PARAMS = UCC_BIT(9) ,
UCC_TEAM_PARAM_FIELD_EP_MAP = UCC_BIT(10) ,
UCC_TEAM_PARAM_FIELD_ID = UCC_BIT(11) ,
UCC_TEAM_PARAM_FIELD_FLAGS = UCC_BIT(12) }

• enum ucc_team_attr_field {
UCC_TEAM_ATTR_FIELD_POST_ORDERING = UCC_BIT(0) ,
UCC_TEAM_ATTR_FIELD_OUTSTANDING_CALLS = UCC_BIT(1) ,
UCC_TEAM_ATTR_FIELD_EP = UCC_BIT(2) ,
UCC_TEAM_ATTR_FIELD_EP_RANGE = UCC_BIT(3) ,
UCC_TEAM_ATTR_FIELD_SYNC_TYPE = UCC_BIT(4) ,
UCC_TEAM_ATTR_FIELD_MEM_PARAMS = UCC_BIT(5) ,
UCC_TEAM_ATTR_FIELD_SIZE = UCC_BIT(6) ,
UCC_TEAM_ATTR_FIELD_EPS = UCC_BIT(7) }

• enum ucc_team_flags { UCC_TEAM_FLAG_COLL_WORK_BUFFER = UCC_BIT(0) }
• enum ucc_post_ordering_t {

UCC_COLLECTIVE_POST_ORDERED = 0 ,
UCC_COLLECTIVE_POST_UNORDERED = 1 ,
UCC_COLLECTIVE_INIT_ORDERED = 2 ,
UCC_COLLECTIVE_INIT_UNORDERED = 3 ,
UCC_COLLECTIVE_INIT_AND_POST_ORDERED = 4 ,
UCC_COLLECTIVE_INIT_AND_POST_UNORDERED = 5 }

• enum ucc_ep_range_type_t {
UCC_COLLECTIVE_EP_RANGE_CONTIG = 0 ,
UCC_COLLECTIVE_EP_RANGE_NONCONTIG = 1 }

• enum ucc_ep_map_type_t {
UCC_EP_MAP_FULL = 1 ,
UCC_EP_MAP_STRIDED = 2 ,
UCC_EP_MAP_ARRAY = 3 ,
UCC_EP_MAP_CB = 4 }

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.6 Team abstraction data-structures 37

8.6.1 Detailed Description

Data-structures associated with team create and management routines

8.6.2 Data Structure Documentation

8.6.2.1 struct ucc_ep_map_strided

Data Fields

uint64_t start

int64_t stride

8.6.2.2 struct ucc_ep_map_array

Data Fields

void ∗ map
size_t elem_size 4 if array is int, 8 if e.g. uint64_t

8.6.2.3 struct ucc_ep_map_t

Data Fields

ucc_ep_map_type_t type

uint64_t ep_num number of eps mapped to ctx

union ucc_ep_map_t.__unnamed2__ __unnamed__

8.6.2.4 struct ucc_team_params

Description
ucc_team_params_t defines the parameters that can be used to customize the team. The "mask"
bit array fields are defined by ucc_team_params_field. The bits in "mask" bit array is defined by
ucc_team_params_field, which correspond to fields in structure ucc_team_params_t. The valid fields
of the structure is specified by the setting the bit to "1" in the bit-array "mask". When bits corresponding to
the fields is not set, the fields are not defined.

Data Fields

uint64_t mask

uint64_t flags

ucc_post_ordering_t ordering ucc_team_params::ordering is set to one the values
defined by ucc_post_ordering_t

uint64_t outstanding_colls ucc_team_params::outstanding_colls represents the
number of outstanding non-blocking calls the user
expects to post to the team. If the user posts more
non-blocking calls than set, the behavior is
undefined. If not set, there is no limit on the number
of outstanding calls to be posted.

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.6 Team abstraction data-structures 38

Data Fields

uint64_t ep ucc_team_params::ep The endpoint is a
non-negative unique integer identifying the
participant in the collective. If ep is not set, and
ucc_team_params::oob is not set, the library
generates the ep. The generated ep can be queried
using the ucc_team_get_attr interface.

uint64_t ∗ ep_list ucc_team_params::ep_list The endpoint list
provides the list of eps participating to create the
team.

ucc_ep_range_type_t ep_range ucc_team_params::ep_range can be either
contiguous or not contiguous. It is a hint to the
library.

uint64_t team_size ucc_team_params::team_size The team size is the
number of participants in the team. If
ucc_team_params::oob is provided, the team size
and ucc_oob_coll::n_oob_eps should be the same.

ucc_coll_sync_type_t sync_type ucc_team_params::sync_type The options for
sync_type are provided by ucc_coll_sync_type_t

ucc_team_oob_coll_t oob ucc_team_params::oob The signature of the
function is defined by ucc_oob_coll_t . The oob is
used for exchanging information between the team
participants during team creation. The user is
responsible for implementing the oob operation. The
relation between ucc_team_params::ep and
ucc_oob_coll::oob_ep is defined as below:

• When both are not provided. The library is
responsible for generating the ep, which can be
then queried via the ucc_team_get_attr
interface. This requires, however,
ucc_params_t ep_map to be set and context
created by ucc_oob_coll. The behavior is
undefined, when neither ucc_team_params::ep
or ucc_team_params::ep_map, or
ucc_team_params::oob is not set.

• When ucc_team_params::ep is provided and
ucc_team_params::oob is not provided. The
“ep” is the unique integer for the participant.

• When ucc_oob_coll::oob_ep is provided and
ucc_team_params::ep is not provided. The
“ep” will be equivalent to
ucc_oob_coll::oob_ep.

• When both are provided, the
ucc_oob_coll::oob_ep and
ucc_team_params_t::ep should be same.
Otherwise, it is undefined.

ucc_team_p2p_conn_t p2p_conn ucc_team_params::p2p_conn is a callback function
for the gathering the point-to-point communication
information.

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.6 Team abstraction data-structures 39

Data Fields

ucc_mem_map_params_t mem_params ucc_team_params::mem_params provides an ability
to attach a buffer to the team. This can be used as
input/output or control buffer for the team.
Typically, it can be useful for one-sided collective
implementation.

ucc_ep_map_t ep_map ucc_team_params::ep_map provides a mapping
between ucc_oob_coll::oob_ep used by the team
and ucc_oob_coll::oob_ep used by the context.
The mapping options are defined by
ucc_ep_map_t. The definition is valid only when
context is created with an ucc_oob_coll.

uint64_t id ucc_team_params::id The team id is a unique
integer identifying the team that is active. The
integer is unique within the process and not the job
.i.e., any two active non-overlapping teams can have
the same id. This semantic helps to avoid a global
information exchange .i.e, the processes or threads
not participating in the particular, need not
participate in the team creation. If not provided, the
team id is created internally. For the MPI
programming model, this can be inherited from the
MPI communicator id.

8.6.2.5 struct ucc_team_attr

Description
ucc_team_attr_t defines the attributes of the team. The bits in "mask" bit array is defined by
ucc_team_attr_field, which correspond to fields in structure ucc_team_attr_t. The valid fields of the
structure is specified by the setting the bit to "1" in the bit-array "mask". When bits corresponding to the
fields is not set, the fields are not defined.

Data Fields

uint64_t mask

ucc_post_ordering_t ordering

uint64_t outstanding_colls

uint64_t ep
ucc_ep_range_type_t ep_range

ucc_coll_sync_type_t sync_type
ucc_mem_map_params_t mem_params

uint32_t size

uint64_t ∗ eps

8.6.2.6 union ucc_ep_map_t.__unnamed2__

Data Fields

struct ucc_ep_map_strided strided
struct ucc_ep_map_array array

struct ucc_ep_map_cb cb

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.6 Team abstraction data-structures 40

8.6.3 Typedef Documentation

8.6.3.1 ucc_team_p2p_conn_t

typedef struct ucc_team_p2p_conn ucc_team_p2p_conn_t

8.6.3.2 ucc_ep_map_t

typedef struct ucc_ep_map_t ucc_ep_map_t

8.6.3.3 ucc_team_params_t

typedef struct ucc_team_params ucc_team_params_t

Description
ucc_team_params_t defines the parameters that can be used to customize the team. The "mask"
bit array fields are defined by ucc_team_params_field. The bits in "mask" bit array is defined by
ucc_team_params_field, which correspond to fields in structure ucc_team_params_t. The valid fields
of the structure is specified by the setting the bit to "1" in the bit-array "mask". When bits corresponding to
the fields is not set, the fields are not defined.

8.6.3.4 ucc_team_attr_t

typedef struct ucc_team_attr ucc_team_attr_t

Description
ucc_team_attr_t defines the attributes of the team. The bits in "mask" bit array is defined by
ucc_team_attr_field, which correspond to fields in structure ucc_team_attr_t. The valid fields of the
structure is specified by the setting the bit to "1" in the bit-array "mask". When bits corresponding to the
fields is not set, the fields are not defined.

8.6.3.5 ucc_team_h

typedef struct ucc_team∗ ucc_team_h

The UCC team handle is an opaque handle created by the library. It abstracts the group resources required
for the collective operations and participants of the collective operation. The participants of the collective
operation can be an OS process or thread.

8.6.3.6 ucc_p2p_conn_t

typedef void∗ ucc_p2p_conn_t

8.6.3.7 ucc_context_addr_h

typedef void∗ ucc_context_addr_h

8.6.3.8 ucc_context_addr_len_t

typedef size_t ucc_context_addr_len_t

8.6.4 Enumeration Type Documentation

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.6 Team abstraction data-structures 41

8.6.4.1 ucc_team_params_field

enum ucc_team_params_field

Enumerator

UCC_TEAM_PARAM_FIELD_ORDERING

UCC_TEAM_PARAM_FIELD_OUTSTANDING_COLLS

UCC_TEAM_PARAM_FIELD_EP

UCC_TEAM_PARAM_FIELD_EP_LIST

UCC_TEAM_PARAM_FIELD_EP_RANGE

UCC_TEAM_PARAM_FIELD_TEAM_SIZE

UCC_TEAM_PARAM_FIELD_SYNC_TYPE

UCC_TEAM_PARAM_FIELD_OOB

UCC_TEAM_PARAM_FIELD_P2P_CONN

UCC_TEAM_PARAM_FIELD_MEM_PARAMS

UCC_TEAM_PARAM_FIELD_EP_MAP

UCC_TEAM_PARAM_FIELD_ID

UCC_TEAM_PARAM_FIELD_FLAGS

8.6.4.2 ucc_team_attr_field

enum ucc_team_attr_field

Enumerator

UCC_TEAM_ATTR_FIELD_POST_ORDERING

UCC_TEAM_ATTR_FIELD_OUTSTANDING_CALLS

UCC_TEAM_ATTR_FIELD_EP

UCC_TEAM_ATTR_FIELD_EP_RANGE

UCC_TEAM_ATTR_FIELD_SYNC_TYPE

UCC_TEAM_ATTR_FIELD_MEM_PARAMS

UCC_TEAM_ATTR_FIELD_SIZE

UCC_TEAM_ATTR_FIELD_EPS

8.6.4.3 ucc_team_flags

enum ucc_team_flags

Enumerator

UCC_TEAM_FLAG_COLL_WORK_BUFFER

8.6.4.4 ucc_post_ordering_t

enum ucc_post_ordering_t

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.7 Team abstraction routines 42

Enumerator

UCC_COLLECTIVE_POST_ORDERED When set to this value, the collective participants
shall post the operation in the same order.

UCC_COLLECTIVE_POST_UNORDERED When set to this value, the collective participants
shall post the operation in any order.

UCC_COLLECTIVE_INIT_ORDERED When set to this value, the collective participants
shall initialize the operation in the same order.

UCC_COLLECTIVE_INIT_UNORDERED When set to this value, the collective participants
shall initialize the operation in any order.

UCC_COLLECTIVE_INIT_AND_POST_←↩
ORDERED

When set to this value, the collective participants
shall initialize and post the operation in the same
order.

UCC_COLLECTIVE_INIT_AND_POST_←↩
UNORDERED

When set to this value, the collective participants
shall initialize and post the operation in any order.

8.6.4.5 ucc_ep_range_type_t

enum ucc_ep_range_type_t

Enumerator

UCC_COLLECTIVE_EP_RANGE_CONTIG

UCC_COLLECTIVE_EP_RANGE_NONCONTIG

8.6.4.6 ucc_ep_map_type_t

enum ucc_ep_map_type_t

Enumerator

UCC_EP_MAP_FULL The ep range of the team spans all eps from a context

UCC_EP_MAP_STRIDED The ep range of the team can be described by the 2 values: start, stride.

UCC_EP_MAP_ARRAY The ep range is given as an array of intergers that map the ep in the
team to the team_context rank.

UCC_EP_MAP_CB The ep range mapping is defined as callback provided by the UCC user.

8.7 Team abstraction routines

Functions

• ucc_status_t ucc_team_create_post (ucc_context_h ∗contexts, uint32_t num_contexts, const
ucc_team_params_t ∗team_params, ucc_team_h ∗new_team)

The routine is a method to create the team.
• ucc_status_t ucc_team_create_test (ucc_team_h team)

The routine queries the status of the team creation operation.
• ucc_status_t ucc_team_destroy (ucc_team_h team)

The team frees the team handle.
• ucc_status_t ucc_team_get_attr (ucc_team_h team, ucc_team_attr_t ∗team_attr)

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.7 Team abstraction routines 43

The routine returns the attributes of the team.
• ucc_status_t ucc_team_create_from_parent (uint64_t my_ep, uint32_t included, ucc_team_h

parent_team, ucc_team_h ∗new_team)
The routine creates a new team from the parent team.

8.7.1 Detailed Description

Team create and management routines

8.7.2 Function Documentation

8.7.2.1 ucc_team_create_post()

ucc_status_t ucc_team_create_post (

ucc_context_h ∗ contexts,

uint32_t num_contexts,

const ucc_team_params_t ∗ team_params,

ucc_team_h ∗ new_team)

Parameters

in contexts Communication contexts abstracting the resources
in num_contexts Number of contexts passed for the create operation

in team_params User defined configurations for the team

out new_team Team handle

Description
ucc_team_create_post is a nonblocking collective operation to create the team handle. Overlapping of
multiple ucc_team_create_post operations are invalid. The post takes in parameters ucc_context_h and
ucc_team_params_t. The ucc_team_params_t provides user configuration to customize the team and,
ucc_context_h provides the resources for the team and collectives. The routine returns immediately after
posting the operation with the new team handle. However, the team handle is not ready for posting the
collective operation. ucc_team_create_test operation is used to learn the status of the new team handle.
On error, the team handle will not be created and corresponding error code as defined by ucc_status_t is
returned.

Returns

Error code as defined by ucc_status_t

8.7.2.2 ucc_team_create_test()

ucc_status_t ucc_team_create_test (

ucc_team_h team)

Parameters

in team Team handle to test

Description
ucc_team_create_test routines tests the status of team handle. If required it can progress the communication
but cannot block on the communications. On error, the team handle becomes invalid, user is responsible to
call ucc_team_destroy to destroy team and free allocated resources.

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.7 Team abstraction routines 44

Returns

Error code as defined by ucc_status_t

8.7.2.3 ucc_team_destroy()

ucc_status_t ucc_team_destroy (

ucc_team_h team)

Parameters

in team Destroy previously created team and release all resources associated with it.

Description
ucc_team_destroy is a nonblocking collective operation to release all resources associated with the team
handle, and destroy the team handle. It is invalid to post a collective operation after the ucc_team_destroy
operation. It is invalid to call ucc_team_destroy operation while ucc_team_create_post is in progress. It
is the user's responsibility to ensure there is one outstanding ucc_team_create_post or ucc_team_destroy
operation is in progress.

Returns

Error code as defined by ucc_status_t

8.7.2.4 ucc_team_get_attr()

ucc_status_t ucc_team_get_attr (

ucc_team_h team,

ucc_team_attr_t ∗ team_attr)

Parameters

in team Team handle
out team_attr Attributes of the team

Description
ucc_team_get_attr routine queries the team handle attributes. The attributes of the team handle are
described by the team attributes ucc_team_attr_t

Returns

Error code as defined by ucc_status_t

8.7.2.5 ucc_team_create_from_parent()

ucc_status_t ucc_team_create_from_parent (

uint64_t my_ep,

uint32_t included,

ucc_team_h parent_team,

ucc_team_h ∗ new_team)

Parameters

in my_ep Endpoint of the process/thread calling the split operation

in parent_team Parent team handle from which a new team handle is created

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.8 Collective operations data-structures 45

Parameters

in included Variable indicating whether a process/thread participates in the newly created
team; value 1 indicates the participation and value 0 indicates otherwise

out new_team Pointer to the new team handle

Description
ucc_team_create_from_parent is a nonblocking collective operation, which creates a new team from the
parent team. If a participant intends to participate in the new team, it passes a TRUE value for the "included"
parameter. Otherwise, it passes FALSE. The routine returns immediately after the post-operation. To learn
the completion of the team create operation, the ucc_team_create_test operation is used.

Returns

Error code as defined by ucc_status_t

8.8 Collective operations data-structures

Data Structures

• struct ucc_coll_buffer_info_v
• struct ucc_coll_buffer_info
• struct ucc_coll_callback

UCC collective completion callback.

Typedefs

• typedef enum ucc_memory_type ucc_memory_type_t
• typedef struct ucc_coll_buffer_info_v ucc_coll_buffer_info_v_t
• typedef struct ucc_coll_buffer_info ucc_coll_buffer_info_t
• typedef struct ucc_coll_req ∗ ucc_coll_req_h

UCC collective request handle.
• typedef struct ucc_coll_callback ucc_coll_callback_t

UCC collective completion callback.
• typedef uint64_t ucc_count_t

Count datatype to support both small (32 bit) and large counts (64 bit)
• typedef uint64_t ucc_aint_t

Datatype to support both small (32 bit) and large address offsets (64 bit)
• typedef uint16_t ucc_coll_id_t

Datatype for collective tags.

Enumerations

• enum ucc_memory_type {
UCC_MEMORY_TYPE_HOST ,
UCC_MEMORY_TYPE_CUDA ,
UCC_MEMORY_TYPE_CUDA_MANAGED ,
UCC_MEMORY_TYPE_ROCM ,
UCC_MEMORY_TYPE_ROCM_MANAGED ,
UCC_MEMORY_TYPE_LAST ,
UCC_MEMORY_TYPE_UNKNOWN = UCC_MEMORY_TYPE_LAST }

• enum ucc_coll_args_flags_t {
UCC_COLL_ARGS_FLAG_IN_PLACE = UCC_BIT(0) ,
UCC_COLL_ARGS_FLAG_PERSISTENT = UCC_BIT(1) ,
UCC_COLL_ARGS_FLAG_COUNT_64BIT = UCC_BIT(2) ,
UCC_COLL_ARGS_FLAG_DISPLACEMENTS_64BIT = UCC_BIT(3) ,

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.8 Collective operations data-structures 46

UCC_COLL_ARGS_FLAG_CONTIG_SRC_BUFFER = UCC_BIT(4) ,
UCC_COLL_ARGS_FLAG_CONTIG_DST_BUFFER = UCC_BIT(5) ,
UCC_COLL_ARGS_FLAG_TIMEOUT = UCC_BIT(6) ,
UCC_COLL_ARGS_FLAG_MEM_MAPPED_BUFFERS = UCC_BIT(7) }

• enum ucc_coll_args_hints_t {
UCC_COLL_ARGS_HINT_OPTMIZE_OVERLAP_CPU = UCC_BIT(24) ,
UCC_COLL_ARGS_HINT_OPTMIZE_OVERLAP_GPU = UCC_BIT(25) ,
UCC_COLL_ARGS_HINT_OPTIMIZE_LATENCY = UCC_BIT(26) ,
UCC_COLL_ARGS_HINT_CONTIG_SRC_BUFFER = UCC_COLL_ARGS_FLAG_CONTIG_←↩
SRC_BUFFER ,
UCC_COLL_ARGS_HINT_CONTIG_DST_BUFFER = UCC_COLL_ARGS_FLAG_CONTIG_←↩
DST_BUFFER }

• enum ucc_error_type_t {
UCC_ERR_TYPE_LOCAL = 0 ,
UCC_ERR_TYPE_GLOBAL = 1 }

• enum ucc_coll_args_field {
UCC_COLL_ARGS_FIELD_FLAGS = UCC_BIT(0) ,
UCC_COLL_ARGS_FIELD_TAG = UCC_BIT(1) ,
UCC_COLL_ARGS_FIELD_CB = UCC_BIT(2) ,
UCC_COLL_ARGS_FIELD_GLOBAL_WORK_BUFFER = UCC_BIT(3) ,
UCC_COLL_ARGS_FIELD_ACTIVE_SET = UCC_BIT(4) }

8.8.1 Detailed Description

Data-structures associated with collective operation creation, progress, and finalize.

8.8.2 Data Structure Documentation

8.8.2.1 struct ucc_coll_buffer_info_v

Data Fields

void ∗ buffer Starting address of the send/recv buffer

ucc_count_t ∗ counts Array of counts of type ucc_count_t describing the total
number of elements

ucc_aint_t ∗ displacements Displacement array of team size and type ucc_aint_t. Entry i
specifies the displacement relative to the start address for the
incoming data(outgoing data) for the team member i. For
send buffer the data is fetched from this displacement and for
receive buffer the incoming data is placed at this displacement.

ucc_datatype_t datatype Datatype of each buffer element

ucc_memory_type_t mem_type Memory type of buffer as defined by ucc_memory_type

8.8.2.2 struct ucc_coll_buffer_info

Data Fields

void ∗ buffer Starting address of the send/recv buffer

ucc_count_t count Total number of elements in the buffer

ucc_datatype_t datatype Datatype of each buffer element

ucc_memory_type_t mem_type Memory type of buffer as defined by ucc_memory_type

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.8 Collective operations data-structures 47

8.8.3 Typedef Documentation

8.8.3.1 ucc_memory_type_t

typedef enum ucc_memory_type ucc_memory_type_t

8.8.3.2 ucc_coll_buffer_info_v_t

typedef struct ucc_coll_buffer_info_v ucc_coll_buffer_info_v_t

8.8.3.3 ucc_coll_buffer_info_t

typedef struct ucc_coll_buffer_info ucc_coll_buffer_info_t

8.8.3.4 ucc_coll_req_h

typedef struct ucc_coll_req∗ ucc_coll_req_h

The UCC request handle is an opaque handle created by the library during the invocation of the collective
operation. The request may be used to learn the status of the collective operation, progress, or complete the
collective operation.

8.8.3.5 ucc_coll_callback_t

typedef struct ucc_coll_callback ucc_coll_callback_t

The callback is invoked whenever the collective operation is completed. It is not allowed to call UCC APIs
from the completion callback except for ucc_collective_finalize.

8.8.3.6 ucc_count_t

typedef uint64_t ucc_count_t

8.8.3.7 ucc_aint_t

typedef uint64_t ucc_aint_t

8.8.3.8 ucc_coll_id_t

typedef uint16_t ucc_coll_id_t

8.8.4 Enumeration Type Documentation

8.8.4.1 ucc_memory_type

enum ucc_memory_type

Enumerator

UCC_MEMORY_TYPE_HOST Default system memory

UCC_MEMORY_TYPE_CUDA NVIDIA CUDA memory

UCC_MEMORY_TYPE_CUDA_MANAGED NVIDIA CUDA managed memory

UCC_MEMORY_TYPE_ROCM AMD ROCM memory

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.8 Collective operations data-structures 48

Enumerator

UCC_MEMORY_TYPE_ROCM_MANAGED AMD ROCM managed system memory

UCC_MEMORY_TYPE_LAST

UCC_MEMORY_TYPE_UNKNOWN

8.8.4.2 ucc_coll_args_flags_t

enum ucc_coll_args_flags_t

Enumerator

UCC_COLL_ARGS_FLAG_IN_PLACE If set, the output buffer is identical to the input
buffer.

UCC_COLL_ARGS_FLAG_PERSISTENT If set, the collective is considered persistent. Only,
the persistent collective can be called multiple
times with the same request.

UCC_COLL_ARGS_FLAG_COUNT_64BIT If set, the count is 64bit, otherwise, it is 32 bit.

UCC_COLL_ARGS_FLAG_←↩
DISPLACEMENTS_64BIT

If set, the displacement is 64bit, otherwise, it is 32
bit.

UCC_COLL_ARGS_FLAG_CONTIG_SRC_←↩
BUFFER

If set, the src buffer is considered contiguous.
Particularly, useful for alltoallv operation.

UCC_COLL_ARGS_FLAG_CONTIG_DST_←↩
BUFFER

If set, the dst buffer is considered contiguous.
Particularly, useful for alltoallv operation.

UCC_COLL_ARGS_FLAG_TIMEOUT If set and the elapsed time after
ucc_collective_post (or
ucc_collective_triggered_post) is greater than
ucc_coll_args_t::timeout, the library returns
UCC_ERR_TIMED_OUT on the calling thread.
Note, the status is not guaranteed to be global on
all the processes participating in the collective.

UCC_COLL_ARGS_FLAG_MEM_MAPPED←↩
_BUFFERS

If set, both src and dst buffers reside in a memory
mapped region. Useful for one-sided collectives.

8.8.4.3 ucc_coll_args_hints_t

enum ucc_coll_args_hints_t

Enumerator

UCC_COLL_ARGS_HINT_OPTMIZE_←↩
OVERLAP_CPU

When the flag is set, the user prefers the library to
choose an algorithm implementation optimized for
the best overlap of CPU resources.

UCC_COLL_ARGS_HINT_OPTMIZE_←↩
OVERLAP_GPU

When the flag is set, the user prefers the library to
choose an algorithm implementation optimized for
the best overlap of GPU resources.

UCC_COLL_ARGS_HINT_OPTIMIZE_←↩
LATENCY

When the flag is set, the user prefers the library to
choose an algorithm implementation optimized for
the latency.

UCC_COLL_ARGS_HINT_CONTIG_SRC_←↩
BUFFER

When the flag is set, the source buffer is
contiguous.

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.9 Collective Operations 49

Enumerator

UCC_COLL_ARGS_HINT_CONTIG_DST_←↩
BUFFER

When the flag is set, the destination buffer is
contiguous.

8.8.4.4 ucc_error_type_t

enum ucc_error_type_t

Enumerator

UCC_ERR_TYPE_LOCAL

UCC_ERR_TYPE_GLOBAL

8.8.4.5 ucc_coll_args_field

enum ucc_coll_args_field

Enumerator

UCC_COLL_ARGS_FIELD_FLAGS

UCC_COLL_ARGS_FIELD_TAG

UCC_COLL_ARGS_FIELD_CB

UCC_COLL_ARGS_FIELD_GLOBAL_WORK_BUFFER

UCC_COLL_ARGS_FIELD_ACTIVE_SET

8.9 Collective Operations

Data Structures

• struct ucc_coll_args
Structure representing arguments for the collective operations. More...

• union ucc_coll_args.src
• union ucc_coll_args.dst
• struct ucc_coll_args.active_set

Typedefs

• typedef struct ucc_coll_args ucc_coll_args_t
Structure representing arguments for the collective operations.

• typedef struct ucc_mem_handle ∗ ucc_mem_h
UCC memory handle.

Functions

• ucc_status_t ucc_collective_init (ucc_coll_args_t ∗coll_args, ucc_coll_req_h ∗request,
ucc_team_h team)

The routine to initialize a collective operation.
• ucc_status_t ucc_collective_post (ucc_coll_req_h request)

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.9 Collective Operations 50

The routine to post a collective operation.
• ucc_status_t ucc_collective_init_and_post (ucc_coll_args_t ∗coll_args, ucc_coll_req_h ∗request,

ucc_team_h team)
The routine to initialize and post a collective operation.

• static ucc_status_t ucc_collective_test (ucc_coll_req_h request)
The routine to query the status of the collective operation.

• ucc_status_t ucc_collective_finalize (ucc_coll_req_h request)
The routine to release the collective operation associated with the request object.

8.9.1 Detailed Description

Collective operations invocation and progress

8.9.2 Data Structure Documentation

8.9.2.1 struct ucc_coll_args

Description

ucc_coll_args_t defines the parameters that can be used to customize the collective operation. The
"mask" bit array fields are defined by ucc_coll_args_field. The bits in "mask" bit array is defined by
ucc_coll_args_field, which correspond to fields in structure ucc_coll_args_t. The valid fields of the struc-
ture are specified by setting the corresponding bit to "1" in the bit-array "mask".

The collective operation is selected by field "coll_type" which must be always set by user. If allreduce
or ∗ reduce operation is selected, the type of reduction is selected by the field ∗ "predefined_reduction_op"
or "custom_reduction_op". For unordered collective operations, the user-provided "tag" value orders the
collective operation. For rooted collective operations such as reduce, scatter, gather, fan-in, and fan-out, the
"root" field must be provided by user and specify the participant endpoint value. The user can request either
"local" or "global" error information using the "error_type" field.

Information about user buffers used for collective operation must be specified according to the "coll_←↩
type".

Data Fields

uint64_t mask

ucc_coll_type_t coll_type Type of collective operation

union ucc_coll_args.src src

union ucc_coll_args.dst dst

ucc_reduction_op_t op Predefined reduction operation, if reduce,
allreduce, reduce_scatter operation is
selected. The field is only specified for
collectives that use pre-defined datatypes

uint64_t flags Provide flags and hints for the collective
operations

uint64_t root Root endpoint for rooted collectives

ucc_error_type_t error_type Error type

ucc_coll_id_t tag Used for ordering collectives

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.9 Collective Operations 51

Data Fields

void ∗ global_work_buffer User allocated scratchpad buffer for one-sided
collectives. The buffer provided should be at
least the size returned by
ucc_context_get_attr with the field mask -
UCC_CONTEXT_ATTR_FIELD_WORK←↩
_BUFFER_SIZE set to 1. The buffer must
be initialized to 0.

ucc_coll_callback_t cb

double timeout Timeout in seconds
struct ucc_coll_args.active_set active_set

8.9.2.2 union ucc_coll_args.src

Data Fields

ucc_coll_buffer_info_t info Buffer info for the collective

ucc_coll_buffer_info_v_t info_v Buffer info for the collective

8.9.2.3 union ucc_coll_args.dst

Data Fields

ucc_coll_buffer_info_t info Buffer info for the collective

ucc_coll_buffer_info_v_t info_v Buffer info for the collective

8.9.2.4 struct ucc_coll_args.active_set

Data Fields

uint64_t start

int64_t stride

uint64_t size

8.9.3 Typedef Documentation

8.9.3.1 ucc_coll_args_t

typedef struct ucc_coll_args ucc_coll_args_t

Description

ucc_coll_args_t defines the parameters that can be used to customize the collective operation. The
"mask" bit array fields are defined by ucc_coll_args_field. The bits in "mask" bit array is defined by
ucc_coll_args_field, which correspond to fields in structure ucc_coll_args_t. The valid fields of the struc-
ture are specified by setting the corresponding bit to "1" in the bit-array "mask".

The collective operation is selected by field "coll_type" which must be always set by user. If allreduce
or ∗ reduce operation is selected, the type of reduction is selected by the field ∗ "predefined_reduction_op"
or "custom_reduction_op". For unordered collective operations, the user-provided "tag" value orders the

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.9 Collective Operations 52

collective operation. For rooted collective operations such as reduce, scatter, gather, fan-in, and fan-out, the
"root" field must be provided by user and specify the participant endpoint value. The user can request either
"local" or "global" error information using the "error_type" field.

Information about user buffers used for collective operation must be specified according to the "coll_←↩
type".

8.9.3.2 ucc_mem_h

typedef struct ucc_mem_handle∗ ucc_mem_h

The UCC memory handle is an opaque handle created by the library representing the buffer and address.

8.9.4 Function Documentation

8.9.4.1 ucc_collective_init()

ucc_status_t ucc_collective_init (

ucc_coll_args_t ∗ coll_args,

ucc_coll_req_h ∗ request,

ucc_team_h team)

Parameters

in coll_args Collective arguments descriptor

out request Request handle representing the collective operation
in team Team handle

Description
ucc_collective_init is a collective initialization operation, where all participants participate. The user provides
all information required to start and complete the collective operation, which includes the input and output
buffers, operation type, team handle, size, and any other hints for optimization. On success, the request
handle is created and returned. On error, the request handle is not created and the appropriate error code is
returned. On return, the ownership of buffers is transferred to the user. If modified, the results of collective
operations posted on the request handle are undefined.

Returns

Error code as defined by ucc_status_t

8.9.4.2 ucc_collective_post()

ucc_status_t ucc_collective_post (

ucc_coll_req_h request)

Parameters

in request Request handle

Description
ucc_collective_post routine posts the collective operation. It does not require synchronization between the
participants for the post operation. On error, request handle becomes invalid, user is responsible to call
ucc_collective_finalize to free allocated resources.

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.9 Collective Operations 53

Returns

Error code as defined by ucc_status_t

8.9.4.3 ucc_collective_init_and_post()

ucc_status_t ucc_collective_init_and_post (

ucc_coll_args_t ∗ coll_args,

ucc_coll_req_h ∗ request,

ucc_team_h team)

Parameters

out request Request handle representing the collective operation
in coll_args Collective arguments descriptor

in team Input Team

Description
ucc_collective_init_and_post initializes the collective operation and also posts the operation.

Note

: The ucc_collective_init_and_post can be implemented as a combination of ucc_collective_init and
ucc_collective_post routines.

Returns

Error code as defined by ucc_status_t

8.9.4.4 ucc_collective_test()

static ucc_status_t ucc_collective_test (

ucc_coll_req_h request) [inline], [static]

Parameters

in request Request handle

Description
ucc_collective_test tests and returns the status of collective operation. On error, request handle becomes
invalid, user is responsible to call ucc_collective_finalize to free allocated resources.

Returns

Error code as defined by ucc_status_t

8.9.4.5 ucc_collective_finalize()

ucc_status_t ucc_collective_finalize (

ucc_coll_req_h request)

Parameters

in request - Request handle

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.10 Events and Triggered operations' data-structures 54

Description
ucc_collective_finalize operation releases all resources associated with the collective operation represented
by the request handle. In UCC_THREAD_MULTIPLE mode, the user is responsible for ensuring that
ucc_collective_finalize is called after the status is UCC_OK and after completing the execution of any
callback registered with ucc_coll_args_t.

Returns

Error code as defined by ucc_status_t

8.10 Events and Triggered operations' data-structures

Data Structures

• struct ucc_event
• struct ucc_ee_params

Typedefs

• typedef enum ucc_event_type ucc_event_type_t
• typedef enum ucc_ee_type ucc_ee_type_t
• typedef struct ucc_event ucc_ev_t
• typedef struct ucc_ee_params ucc_ee_params_t

Enumerations

• enum ucc_event_type {
UCC_EVENT_COLLECTIVE_POST = UCC_BIT(0) ,
UCC_EVENT_COLLECTIVE_COMPLETE = UCC_BIT(1) ,
UCC_EVENT_COMPUTE_COMPLETE = UCC_BIT(2) ,
UCC_EVENT_OVERFLOW = UCC_BIT(3) }

• enum ucc_ee_type {
UCC_EE_FIRST = 0 ,
UCC_EE_CUDA_STREAM = UCC_EE_FIRST ,
UCC_EE_CPU_THREAD ,
UCC_EE_ROCM_STREAM ,
UCC_EE_LAST ,
UCC_EE_UNKNOWN = UCC_EE_LAST }

8.10.1 Detailed Description

Data-structures associated with event-driven collective execution

8.10.2 Data Structure Documentation

8.10.2.1 struct ucc_event

Data Fields

ucc_event_type_t ev_type

void ∗ ev_context

size_t ev_context_size

ucc_coll_req_h req

8.10.2.2 struct ucc_ee_params

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.10 Events and Triggered operations' data-structures 55

Data Fields

ucc_ee_type_t ee_type

void ∗ ee_context

size_t ee_context_size

8.10.3 Typedef Documentation

8.10.3.1 ucc_event_type_t

typedef enum ucc_event_type ucc_event_type_t

8.10.3.2 ucc_ee_type_t

typedef enum ucc_ee_type ucc_ee_type_t

8.10.3.3 ucc_ev_t

typedef struct ucc_event ucc_ev_t

8.10.3.4 ucc_ee_params_t

typedef struct ucc_ee_params ucc_ee_params_t

8.10.4 Enumeration Type Documentation

8.10.4.1 ucc_event_type

enum ucc_event_type

Enumerator

UCC_EVENT_COLLECTIVE_POST

UCC_EVENT_COLLECTIVE_COMPLETE

UCC_EVENT_COMPUTE_COMPLETE

UCC_EVENT_OVERFLOW

8.10.4.2 ucc_ee_type

enum ucc_ee_type

Enumerator

UCC_EE_FIRST

UCC_EE_CUDA_STREAM

UCC_EE_CPU_THREAD

UCC_EE_ROCM_STREAM

UCC_EE_LAST

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.11 Events and Triggered Operations 56

Enumerator

UCC_EE_UNKNOWN

8.11 Events and Triggered Operations

Functions

• ucc_status_t ucc_ee_create (ucc_team_h team, const ucc_ee_params_t ∗params, ucc_ee_h ∗ee)
The routine creates the execution context for collective operations.

• ucc_status_t ucc_ee_destroy (ucc_ee_h ee)
The routine destroys the execution context created for collective operations.

• ucc_status_t ucc_ee_get_event (ucc_ee_h ee, ucc_ev_t ∗∗ev)
The routine gets the event from the event queue.

• ucc_status_t ucc_ee_ack_event (ucc_ee_h ee, ucc_ev_t ∗ev)
The routine acks the events from the event queue.

• ucc_status_t ucc_ee_set_event (ucc_ee_h ee, ucc_ev_t ∗ev)
The routine to set the event to the tail of the queue.

• ucc_status_t ucc_ee_wait (ucc_ee_h ee, ucc_ev_t ∗ev)
The routine blocks the calling thread until there is an event on the queue.

• ucc_status_t ucc_collective_triggered_post (ucc_ee_h ee, ucc_ev_t ∗ee_event)
The routine posts the collective operation on the execution engine, which is launched on the event.

8.11.1 Detailed Description

Event-driven Collective Execution

8.11.2 Function Documentation

8.11.2.1 ucc_ee_create()

ucc_status_t ucc_ee_create (

ucc_team_h team,

const ucc_ee_params_t ∗ params,

ucc_ee_h ∗ ee)

Parameters

in team Team handle
in params User provided params to customize the execution engine
out ee Execution engine handle

Description
ucc_ee_create creates the execution engine. It enables event-driven collective execution. ucc_ee_params_t
allows the execution engine to be configured to abstract either GPU and CPU threads. The execution engine
is created and coupled with the team. There can be many execution engines coupled to the team. However,
attaching the same execution engine to multiple teams is not allowed. The execution engine is created after
the team is created and destroyed before the team is destroyed. It is the user's responsibility to destroy the
execution engines before the team. If the team is destroyed before the execution engine is destroyed, the result
is undefined.

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.11 Events and Triggered Operations 57

Returns

Error code as defined by ucc_status_t

8.11.2.2 ucc_ee_destroy()

ucc_status_t ucc_ee_destroy (

ucc_ee_h ee)

Parameters

in ee Execution engine handle

Description
ucc_ee_destroy releases the resources attached with the execution engine and destroys the execution engine.
All events and triggered operations related to this ee are invalid after the destroy operation. To avoid race be-
tween the creation and destroying the execution engine, for a given ee, the ucc_ee_create and ucc_ee_destroy
must be invoked from the same thread.

Returns

Error code as defined by ucc_status_t

8.11.2.3 ucc_ee_get_event()

ucc_status_t ucc_ee_get_event (

ucc_ee_h ee,

ucc_ev_t ∗∗ ev)

Parameters

in ee Execution engine handle
out ev Event structure fetched from the event queue

Description
ucc_ee_get_event fetches the events from the execution engine. If there are no events posted on the ee, it
returns immediately without waiting for events. All events must be acknowledged using the ucc_ee_ack_event
interface. The event acknowledged is destroyed by the library. An event fetched with ucc_ee_get_event but
not acknowledged might consume resources in the library.

Returns

Error code as defined by ucc_status_t

8.11.2.4 ucc_ee_ack_event()

ucc_status_t ucc_ee_ack_event (

ucc_ee_h ee,

ucc_ev_t ∗ ev)

Parameters

in ee Execution engine handle
in ev Event to be acked

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.11 Events and Triggered Operations 58

Description
An event acknowledged by the user using ucc_ee_ack_event is destroyed by the library. Any triggered
operations on the event should be completed before calling this interface. The behavior is undefined if the
user acknowledges the event while waiting on the event or triggering operations on the event.

Returns

Error code as defined by ucc_status_t

8.11.2.5 ucc_ee_set_event()

ucc_status_t ucc_ee_set_event (

ucc_ee_h ee,

ucc_ev_t ∗ ev)

Parameters

in ee Execution engine handle
in ev Event structure fetched from the event queue

Description
ucc_ee_set_event sets the event on the execution engine. If the operations are waiting on the event when
the user sets the event, the operations are launched. The events created by the user need to be destroyed by
the user.

Returns

Error code as defined by ucc_status_t

8.11.2.6 ucc_ee_wait()

ucc_status_t ucc_ee_wait (

ucc_ee_h ee,

ucc_ev_t ∗ ev)

Parameters

in ee Execution engine handle
out ev Event structure fetched from the event queue

Description
The user thread invoking the ucc_ee_wait interface is blocked until an event is posted to the execution engine.

Returns

Error code as defined by ucc_status_t

8.11.2.7 ucc_collective_triggered_post()

ucc_status_t ucc_collective_triggered_post (

ucc_ee_h ee,

ucc_ev_t ∗ ee_event)

Parameters

in ee Execution engine handle

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.12 Utility Operations 59

Parameters

in ee_event Event triggering the post operation

Description
ucc_collective_triggered_post allow the users to schedule a collective operation that executes in the future
when an event occurs on the execution engine. On error, request handle associated with event becomes invalid,
user is responsible to call ucc_collective_finalize to free allocated resources.

Returns

Error code as defined by ucc_status_t

8.12 Utility Operations

Enumerations

• enum ucc_config_print_flags_t {
UCC_CONFIG_PRINT_CONFIG = UCC_BIT(0) ,
UCC_CONFIG_PRINT_HEADER = UCC_BIT(1) ,
UCC_CONFIG_PRINT_DOC = UCC_BIT(2) ,
UCC_CONFIG_PRINT_HIDDEN = UCC_BIT(3) }

Print configurations.
• enum ucc_status_t {

UCC_OK = 0 ,
UCC_INPROGRESS = 1 ,
UCC_OPERATION_INITIALIZED = 2 ,
UCC_ERR_NOT_SUPPORTED = -1 ,
UCC_ERR_NOT_IMPLEMENTED = -2 ,
UCC_ERR_INVALID_PARAM = -3 ,
UCC_ERR_NO_MEMORY = -4 ,
UCC_ERR_NO_RESOURCE = -5 ,
UCC_ERR_NO_MESSAGE = -6 ,
UCC_ERR_NOT_FOUND = -7 ,
UCC_ERR_TIMED_OUT = -8 ,
UCC_ERR_LAST = -100 }

Status codes for the UCC operations.

Functions

• const char ∗ ucc_status_string (ucc_status_t status)
Routine to convert status code to string.

8.12.1 Detailed Description

Helper functions to be used across the library

8.12.2 Enumeration Type Documentation

8.12.2.1 ucc_config_print_flags_t

enum ucc_config_print_flags_t

Enumerator

UCC_CONFIG_PRINT_CONFIG

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

8.12 Utility Operations 60

Enumerator

UCC_CONFIG_PRINT_HEADER

UCC_CONFIG_PRINT_DOC

UCC_CONFIG_PRINT_HIDDEN

8.12.2.2 ucc_status_t

enum ucc_status_t

Enumerator

UCC_OK

UCC_INPROGRESS Operation is posted and is in progress

UCC_OPERATION_INITIALIZED Operation initialized but not posted

UCC_ERR_NOT_SUPPORTED

UCC_ERR_NOT_IMPLEMENTED

UCC_ERR_INVALID_PARAM

UCC_ERR_NO_MEMORY

UCC_ERR_NO_RESOURCE

UCC_ERR_NO_MESSAGE General purpose return code without specific error

UCC_ERR_NOT_FOUND

UCC_ERR_TIMED_OUT

UCC_ERR_LAST

8.12.3 Function Documentation

8.12.3.1 ucc_status_string()

const char ∗ ucc_status_string (

ucc_status_t status)

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

Chapter 9

Data Structure Documentation

9.1 ucc_coll_callback Struct Reference
UCC collective completion callback.

Data Fields

• void(∗ cb)(void ∗data, ucc_status_t status)
• void ∗ data

9.1.1 Detailed Description

The callback is invoked whenever the collective operation is completed. It is not allowed to call UCC APIs
from the completion callback except for ucc_collective_finalize.

9.1.2 Field Documentation

9.1.2.1 cb

void(∗ ucc_coll_callback::cb) (void ∗data, ucc_status_t status)

9.1.2.2 data

void∗ ucc_coll_callback::data

The documentation for this struct was generated from the following file:

• ucc_def.h

9.2 ucc_ep_map_cb Struct Reference

Data Fields

• uint64_t(∗ cb)(uint64_t ep, void ∗cb_ctx)
• void ∗ cb_ctx

9.2.1 Field Documentation

9.2.1.1 cb

uint64_t(∗ ucc_ep_map_cb::cb) (uint64_t ep, void ∗cb_ctx)

9.3 ucc_generic_dt_ops Struct Reference 62

9.2.1.2 cb_ctx

void∗ ucc_ep_map_cb::cb_ctx

The documentation for this struct was generated from the following file:

• ucc.h

9.3 ucc_generic_dt_ops Struct Reference
UCC generic data type descriptor.

Data Fields

• uint64_t mask
• uint64_t flags
• size_t contig_size
• void ∗(∗ start_pack)(void ∗context, const void ∗buffer, size_t count)

Start a packing request.
• void ∗(∗ start_unpack)(void ∗context, void ∗buffer, size_t count)

Start an unpacking request.
• size_t(∗ packed_size)(void ∗state)

Get the total size of packed data.
• size_t(∗ pack)(void ∗state, size_t offset, void ∗dest, size_t max_length)

Pack data.
• ucc_status_t(∗ unpack)(void ∗state, size_t offset, const void ∗src, size_t length)

Unpack data.
• void(∗ finish)(void ∗state)

Finish packing/unpacking.
• struct {

ucc_status_t(∗ cb)(const ucc_reduce_cb_params_t ∗params)
void ∗ cb_ctx
} reduce

User-defined reduction callback.

9.3.1 Detailed Description

This structure provides a generic datatype descriptor that is used to create user-defined datatypes.

9.3.2 Field Documentation

9.3.2.1 mask

uint64_t ucc_generic_dt_ops::mask

9.3.2.2 flags

uint64_t ucc_generic_dt_ops::flags

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

9.5 ucc_oob_coll Struct Reference 63

9.3.2.3 contig_size

size_t ucc_generic_dt_ops::contig_size

size of the datatype if UCC_GENERIC_DT_OPS_FLAG_CONTIG is set
The documentation for this struct was generated from the following file:

• ucc.h

9.4 ucc_generic_dt_ops.reduce Struct Reference
User-defined reduction callback.

Data Fields

• ucc_status_t(∗ cb)(const ucc_reduce_cb_params_t ∗params)
• void ∗ cb_ctx

9.4.1 Detailed Description

The pointer refers to user-defined reduction routine.

Parameters

in params reduction descriptor

9.4.2 Field Documentation

9.4.2.1 cb

9.4.2.2 cb_ctx

The documentation for this struct was generated from the following files:

9.5 ucc_oob_coll Struct Reference
OOB collective operation for creating the context.

Data Fields

• ucc_status_t(∗ allgather)(void ∗src_buf, void ∗recv_buf, size_t size, void ∗allgather_info, void
∗∗request)

• ucc_status_t(∗ req_test)(void ∗request)
• ucc_status_t(∗ req_free)(void ∗request)
• void ∗ coll_info
• uint32_t n_oob_eps
• uint32_t oob_ep

9.5.1 Field Documentation

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

9.6 ucc_team_p2p_conn Struct Reference 64

9.5.1.1 allgather

ucc_status_t(∗ ucc_oob_coll::allgather) (void ∗src_buf, void ∗recv_buf, size_t size, void ∗allgather←↩
_info, void ∗∗request)

9.5.1.2 req_test

ucc_status_t(∗ ucc_oob_coll::req_test) (void ∗request)

9.5.1.3 req_free

ucc_status_t(∗ ucc_oob_coll::req_free) (void ∗request)

9.5.1.4 coll_info

void∗ ucc_oob_coll::coll_info

9.5.1.5 n_oob_eps

uint32_t ucc_oob_coll::n_oob_eps

Number of endpoints participating in the oob operation (e.g., number of processes representing a ucc team)

9.5.1.6 oob_ep

uint32_t ucc_oob_coll::oob_ep

Integer value that represents the position of the calling processes in the given oob op: the data specified by
"src_buf" will be placed at the offset "oob_ep∗size" in the "recv_buf". oob_ep must be uniq at every
calling process and should be in the range [0:n_oob_eps).
The documentation for this struct was generated from the following file:

• ucc.h

9.6 ucc_team_p2p_conn Struct Reference

Data Fields

• int(∗ conn_info_lookup)(void ∗conn_ctx, uint64_t ep, ucc_p2p_conn_t ∗∗conn_info, void
∗request)

• int(∗ conn_info_release)(ucc_p2p_conn_t ∗conn_info)
• void ∗ conn_ctx
• ucc_status_t(∗ req_test)(void ∗request)
• ucc_status_t(∗ req_free)(void ∗request)

9.6.1 Field Documentation

9.6.1.1 conn_info_lookup

int(∗ ucc_team_p2p_conn::conn_info_lookup) (void ∗conn_ctx, uint64_t ep, ucc_p2p_conn_t ∗∗conn←↩
_info, void ∗request)

9.6.1.2 conn_info_release

int(∗ ucc_team_p2p_conn::conn_info_release) (ucc_p2p_conn_t ∗conn_info)

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

9.6 ucc_team_p2p_conn Struct Reference 65

9.6.1.3 conn_ctx

void∗ ucc_team_p2p_conn::conn_ctx

9.6.1.4 req_test

ucc_status_t(∗ ucc_team_p2p_conn::req_test) (void ∗request)

9.6.1.5 req_free

ucc_status_t(∗ ucc_team_p2p_conn::req_free) (void ∗request)
The documentation for this struct was generated from the following file:

• ucc.h

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

Index

allgather
ucc_oob_coll, 63

cb
Datatypes data-structures and functions, 24
ucc_coll_callback, 61
ucc_ep_map_cb, 61
ucc_generic_dt_ops.reduce, 63

cb_ctx
Datatypes data-structures and functions, 24
ucc_ep_map_cb, 61
ucc_generic_dt_ops.reduce, 63

coll_info
ucc_oob_coll, 64

Collective Operations, 49
ucc_coll_args_t, 51
ucc_collective_finalize, 53
ucc_collective_init, 52
ucc_collective_init_and_post, 53
ucc_collective_post, 52
ucc_collective_test, 53
ucc_mem_h, 52

Collective operations data-structures, 45
ucc_aint_t, 47
ucc_coll_args_field, 49
UCC_COLL_ARGS_FIELD_ACTIVE_SET,

49
UCC_COLL_ARGS_FIELD_CB, 49
UCC_COLL_ARGS_FIELD_FLAGS, 49
UCC_COLL_ARGS_FIELD_GLOBAL_WORK_BUFFER,

49
UCC_COLL_ARGS_FIELD_TAG, 49
UCC_COLL_ARGS_FLAG_CONTIG_DST_BUFFER,

48
UCC_COLL_ARGS_FLAG_CONTIG_SRC_BUFFER,

48
UCC_COLL_ARGS_FLAG_COUNT_64BIT,

48
UCC_COLL_ARGS_FLAG_DISPLACEMENTS_64BIT,

48
UCC_COLL_ARGS_FLAG_IN_PLACE, 48
UCC_COLL_ARGS_FLAG_MEM_MAPPED_BUFFERS,

48
UCC_COLL_ARGS_FLAG_PERSISTENT, 48
UCC_COLL_ARGS_FLAG_TIMEOUT, 48
ucc_coll_args_flags_t, 48
UCC_COLL_ARGS_HINT_CONTIG_DST_BUFFER,

49
UCC_COLL_ARGS_HINT_CONTIG_SRC_BUFFER,

48

UCC_COLL_ARGS_HINT_OPTIMIZE_LATENCY,
48

UCC_COLL_ARGS_HINT_OPTMIZE_OVERLAP_CPU,
48

UCC_COLL_ARGS_HINT_OPTMIZE_OVERLAP_GPU,
48

ucc_coll_args_hints_t, 48
ucc_coll_buffer_info_t, 47
ucc_coll_buffer_info_v_t, 47
ucc_coll_callback_t, 47
ucc_coll_id_t, 47
ucc_coll_req_h, 47
ucc_count_t, 47
UCC_ERR_TYPE_GLOBAL, 49
UCC_ERR_TYPE_LOCAL, 49
ucc_error_type_t, 49
ucc_memory_type, 47
UCC_MEMORY_TYPE_CUDA, 47
UCC_MEMORY_TYPE_CUDA_MANAGED,

47
UCC_MEMORY_TYPE_HOST, 47
UCC_MEMORY_TYPE_LAST, 48
UCC_MEMORY_TYPE_ROCM, 47
UCC_MEMORY_TYPE_ROCM_MANAGED,

48
ucc_memory_type_t, 47
UCC_MEMORY_TYPE_UNKNOWN, 48

conn_ctx
ucc_team_p2p_conn, 64

conn_info_lookup
ucc_team_p2p_conn, 64

conn_info_release
ucc_team_p2p_conn, 64

Context abstraction data-structures, 28
ucc_context_attr_field, 31
UCC_CONTEXT_ATTR_FIELD_CTX_ADDR,

32
UCC_CONTEXT_ATTR_FIELD_CTX_ADDR_LEN,

32
UCC_CONTEXT_ATTR_FIELD_SYNC_TYPE,

32
UCC_CONTEXT_ATTR_FIELD_TYPE, 31
UCC_CONTEXT_ATTR_FIELD_WORK_BUFFER_SIZE,

32
ucc_context_attr_t, 30
ucc_context_config_h, 31
UCC_CONTEXT_EXCLUSIVE, 31
ucc_context_h, 31
UCC_CONTEXT_PARAM_FIELD_ID, 31

INDEX 67

UCC_CONTEXT_PARAM_FIELD_MEM_PARAMS,
31

UCC_CONTEXT_PARAM_FIELD_OOB, 31
UCC_CONTEXT_PARAM_FIELD_SYNC_TYPE,

31
UCC_CONTEXT_PARAM_FIELD_TYPE, 31
ucc_context_params_field, 31
ucc_context_params_t, 30
UCC_CONTEXT_SHARED, 31
ucc_context_type_t, 31
ucc_mem_map_params_t, 30
ucc_mem_map_t, 30
ucc_oob_coll_t, 30

Context abstraction routines, 32
ucc_context_config_modify, 33
ucc_context_config_print, 33
ucc_context_config_read, 32
ucc_context_config_release, 33
ucc_context_create, 34
ucc_context_destroy, 35
ucc_context_get_attr, 35
ucc_context_progress, 34

contig_size
ucc_generic_dt_ops, 62

data
ucc_coll_callback, 61

Datatypes data-structures and functions, 19
cb, 24
cb_ctx, 24
finish, 24
pack, 23
packed_size, 23
reduce, 24
start_pack, 22
start_unpack, 23
ucc_datatype_t, 21
ucc_dt_create_generic, 22
ucc_dt_destroy, 22
ucc_generic_dt_ops_field, 21
UCC_GENERIC_DT_OPS_FIELD_FLAGS,

21
UCC_GENERIC_DT_OPS_FLAG_CONTIG,

22
UCC_GENERIC_DT_OPS_FLAG_REDUCE,

22
ucc_generic_dt_ops_flags_t, 21
ucc_generic_dt_ops_t, 21
ucc_reduce_cb_params_t, 21
unpack, 24

Events and Triggered Operations, 56
ucc_collective_triggered_post, 58
ucc_ee_ack_event, 57
ucc_ee_create, 56
ucc_ee_destroy, 57
ucc_ee_get_event, 57
ucc_ee_set_event, 58
ucc_ee_wait, 58

Events and Triggered operations' data-structures
UCC_EE_CPU_THREAD, 55
UCC_EE_CUDA_STREAM, 55
UCC_EE_FIRST, 55
UCC_EE_LAST, 55
UCC_EE_ROCM_STREAM, 55
UCC_EE_UNKNOWN, 56
UCC_EVENT_COLLECTIVE_COMPLETE,

55
UCC_EVENT_COLLECTIVE_POST, 55
UCC_EVENT_COMPUTE_COMPLETE, 55
UCC_EVENT_OVERFLOW, 55

Events and Triggered operations' data-structures, 54
ucc_ee_params_t, 55
ucc_ee_type, 55
ucc_ee_type_t, 55
ucc_ev_t, 55
ucc_event_type, 55
ucc_event_type_t, 55

finish
Datatypes data-structures and functions, 24

flags
ucc_generic_dt_ops, 62

Library initialization and finalization routines, 25
ucc_finalize, 27
ucc_get_version, 27
ucc_get_version_string, 27
ucc_init, 27
ucc_lib_config_modify, 26
ucc_lib_config_print, 26
ucc_lib_config_read, 25
ucc_lib_config_release, 26
ucc_lib_get_attr, 28

Library initialization data-structures, 14
ucc_coll_sync_type_t, 18
UCC_COLL_TYPE_ALLGATHER, 17
UCC_COLL_TYPE_ALLGATHERV, 17
UCC_COLL_TYPE_ALLREDUCE, 17
UCC_COLL_TYPE_ALLTOALL, 17
UCC_COLL_TYPE_ALLTOALLV, 17
UCC_COLL_TYPE_BARRIER, 17
UCC_COLL_TYPE_BCAST, 17
UCC_COLL_TYPE_FANIN, 17
UCC_COLL_TYPE_FANOUT, 17
UCC_COLL_TYPE_GATHER, 17
UCC_COLL_TYPE_GATHERV, 17
UCC_COLL_TYPE_LAST, 17
UCC_COLL_TYPE_REDUCE, 17
UCC_COLL_TYPE_REDUCE_SCATTER, 17
UCC_COLL_TYPE_REDUCE_SCATTERV,

17
UCC_COLL_TYPE_SCATTER, 17
UCC_COLL_TYPE_SCATTERV, 17
ucc_coll_type_t, 17
ucc_lib_attr_field, 19
UCC_LIB_ATTR_FIELD_COLL_TYPES, 19

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

INDEX 68

UCC_LIB_ATTR_FIELD_REDUCTION_TYPES,
19

UCC_LIB_ATTR_FIELD_SYNC_TYPE, 19
UCC_LIB_ATTR_FIELD_THREAD_MODE,

19
ucc_lib_attr_t, 16
ucc_lib_config_h, 17
ucc_lib_h, 17
UCC_LIB_PARAM_FIELD_COLL_TYPES,

19
UCC_LIB_PARAM_FIELD_REDUCTION_TYPES,

19
UCC_LIB_PARAM_FIELD_SYNC_TYPE, 19
UCC_LIB_PARAM_FIELD_THREAD_MODE,

19
ucc_lib_params_field, 19
ucc_lib_params_t, 16
UCC_NO_SYNC_COLLECTIVES, 19
UCC_OP_AVG, 18
UCC_OP_BAND, 18
UCC_OP_BOR, 18
UCC_OP_BXOR, 18
UCC_OP_LAND, 18
UCC_OP_LAST, 18
UCC_OP_LOR, 18
UCC_OP_LXOR, 18
UCC_OP_MAX, 18
UCC_OP_MAXLOC, 18
UCC_OP_MIN, 18
UCC_OP_MINLOC, 18
UCC_OP_PROD, 18
UCC_OP_SUM, 18
ucc_reduction_op_t, 17
UCC_SYNC_COLLECTIVES, 19
UCC_THREAD_FUNNELED, 18
ucc_thread_mode_t, 18
UCC_THREAD_MULTIPLE, 18
UCC_THREAD_SINGLE, 18

mask
ucc_generic_dt_ops, 62

n_oob_eps
ucc_oob_coll, 64

oob_ep
ucc_oob_coll, 64

pack
Datatypes data-structures and functions, 23

packed_size
Datatypes data-structures and functions, 23

reduce
Datatypes data-structures and functions, 24

req_free
ucc_oob_coll, 64
ucc_team_p2p_conn, 65

req_test

ucc_oob_coll, 64
ucc_team_p2p_conn, 65

start_pack
Datatypes data-structures and functions, 22

start_unpack
Datatypes data-structures and functions, 23

Team abstraction data-structures, 35
UCC_COLLECTIVE_EP_RANGE_CONTIG,

42
UCC_COLLECTIVE_EP_RANGE_NONCONTIG,

42
UCC_COLLECTIVE_INIT_AND_POST_ORDERED,

42
UCC_COLLECTIVE_INIT_AND_POST_UNORDERED,

42
UCC_COLLECTIVE_INIT_ORDERED, 42
UCC_COLLECTIVE_INIT_UNORDERED, 42
UCC_COLLECTIVE_POST_ORDERED, 42
UCC_COLLECTIVE_POST_UNORDERED,

42
ucc_context_addr_h, 40
ucc_context_addr_len_t, 40
UCC_EP_MAP_ARRAY, 42
UCC_EP_MAP_CB, 42
UCC_EP_MAP_FULL, 42
UCC_EP_MAP_STRIDED, 42
ucc_ep_map_t, 40
ucc_ep_map_type_t, 42
ucc_ep_range_type_t, 42
ucc_p2p_conn_t, 40
ucc_post_ordering_t, 41
ucc_team_attr_field, 41
UCC_TEAM_ATTR_FIELD_EP, 41
UCC_TEAM_ATTR_FIELD_EP_RANGE, 41
UCC_TEAM_ATTR_FIELD_EPS, 41
UCC_TEAM_ATTR_FIELD_MEM_PARAMS,

41
UCC_TEAM_ATTR_FIELD_OUTSTANDING_CALLS,

41
UCC_TEAM_ATTR_FIELD_POST_ORDERING,

41
UCC_TEAM_ATTR_FIELD_SIZE, 41
UCC_TEAM_ATTR_FIELD_SYNC_TYPE,

41
ucc_team_attr_t, 40
UCC_TEAM_FLAG_COLL_WORK_BUFFER,

41
ucc_team_flags, 41
ucc_team_h, 40
ucc_team_p2p_conn_t, 40
UCC_TEAM_PARAM_FIELD_EP, 41
UCC_TEAM_PARAM_FIELD_EP_LIST, 41
UCC_TEAM_PARAM_FIELD_EP_MAP, 41
UCC_TEAM_PARAM_FIELD_EP_RANGE,

41
UCC_TEAM_PARAM_FIELD_FLAGS, 41
UCC_TEAM_PARAM_FIELD_ID, 41

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

INDEX 69

UCC_TEAM_PARAM_FIELD_MEM_PARAMS,
41

UCC_TEAM_PARAM_FIELD_OOB, 41
UCC_TEAM_PARAM_FIELD_ORDERING,

41
UCC_TEAM_PARAM_FIELD_OUTSTANDING_COLLS,

41
UCC_TEAM_PARAM_FIELD_P2P_CONN,

41
UCC_TEAM_PARAM_FIELD_SYNC_TYPE,

41
UCC_TEAM_PARAM_FIELD_TEAM_SIZE,

41
ucc_team_params_field, 40
ucc_team_params_t, 40

Team abstraction routines, 42
ucc_team_create_from_parent, 44
ucc_team_create_post, 43
ucc_team_create_test, 43
ucc_team_destroy, 44
ucc_team_get_attr, 44

ucc_aint_t
Collective operations data-structures, 47

ucc_coll_args, 50
ucc_coll_args.active_set, 51
ucc_coll_args.dst, 51
ucc_coll_args.src, 51
ucc_coll_args_field

Collective operations data-structures, 49
UCC_COLL_ARGS_FIELD_ACTIVE_SET

Collective operations data-structures, 49
UCC_COLL_ARGS_FIELD_CB

Collective operations data-structures, 49
UCC_COLL_ARGS_FIELD_FLAGS

Collective operations data-structures, 49
UCC_COLL_ARGS_FIELD_GLOBAL_WORK_BUFFER

Collective operations data-structures, 49
UCC_COLL_ARGS_FIELD_TAG

Collective operations data-structures, 49
UCC_COLL_ARGS_FLAG_CONTIG_DST_BUFFER

Collective operations data-structures, 48
UCC_COLL_ARGS_FLAG_CONTIG_SRC_BUFFER

Collective operations data-structures, 48
UCC_COLL_ARGS_FLAG_COUNT_64BIT

Collective operations data-structures, 48
UCC_COLL_ARGS_FLAG_DISPLACEMENTS_64BIT

Collective operations data-structures, 48
UCC_COLL_ARGS_FLAG_IN_PLACE

Collective operations data-structures, 48
UCC_COLL_ARGS_FLAG_MEM_MAPPED_BUFFERS

Collective operations data-structures, 48
UCC_COLL_ARGS_FLAG_PERSISTENT

Collective operations data-structures, 48
UCC_COLL_ARGS_FLAG_TIMEOUT

Collective operations data-structures, 48
ucc_coll_args_flags_t

Collective operations data-structures, 48
UCC_COLL_ARGS_HINT_CONTIG_DST_BUFFER

Collective operations data-structures, 49
UCC_COLL_ARGS_HINT_CONTIG_SRC_BUFFER

Collective operations data-structures, 48
UCC_COLL_ARGS_HINT_OPTIMIZE_LATENCY

Collective operations data-structures, 48
UCC_COLL_ARGS_HINT_OPTMIZE_OVERLAP_CPU

Collective operations data-structures, 48
UCC_COLL_ARGS_HINT_OPTMIZE_OVERLAP_GPU

Collective operations data-structures, 48
ucc_coll_args_hints_t

Collective operations data-structures, 48
ucc_coll_args_t

Collective Operations, 51
ucc_coll_buffer_info, 46
ucc_coll_buffer_info_t

Collective operations data-structures, 47
ucc_coll_buffer_info_v, 46
ucc_coll_buffer_info_v_t

Collective operations data-structures, 47
ucc_coll_callback, 61

cb, 61
data, 61

ucc_coll_callback_t
Collective operations data-structures, 47

ucc_coll_id_t
Collective operations data-structures, 47

ucc_coll_req_h
Collective operations data-structures, 47

ucc_coll_sync_type_t
Library initialization data-structures, 18

UCC_COLL_TYPE_ALLGATHER
Library initialization data-structures, 17

UCC_COLL_TYPE_ALLGATHERV
Library initialization data-structures, 17

UCC_COLL_TYPE_ALLREDUCE
Library initialization data-structures, 17

UCC_COLL_TYPE_ALLTOALL
Library initialization data-structures, 17

UCC_COLL_TYPE_ALLTOALLV
Library initialization data-structures, 17

UCC_COLL_TYPE_BARRIER
Library initialization data-structures, 17

UCC_COLL_TYPE_BCAST
Library initialization data-structures, 17

UCC_COLL_TYPE_FANIN
Library initialization data-structures, 17

UCC_COLL_TYPE_FANOUT
Library initialization data-structures, 17

UCC_COLL_TYPE_GATHER
Library initialization data-structures, 17

UCC_COLL_TYPE_GATHERV
Library initialization data-structures, 17

UCC_COLL_TYPE_LAST
Library initialization data-structures, 17

UCC_COLL_TYPE_REDUCE
Library initialization data-structures, 17

UCC_COLL_TYPE_REDUCE_SCATTER
Library initialization data-structures, 17

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

INDEX 70

UCC_COLL_TYPE_REDUCE_SCATTERV
Library initialization data-structures, 17

UCC_COLL_TYPE_SCATTER
Library initialization data-structures, 17

UCC_COLL_TYPE_SCATTERV
Library initialization data-structures, 17

ucc_coll_type_t
Library initialization data-structures, 17

UCC_COLLECTIVE_EP_RANGE_CONTIG
Team abstraction data-structures, 42

UCC_COLLECTIVE_EP_RANGE_NONCONTIG
Team abstraction data-structures, 42

ucc_collective_finalize
Collective Operations, 53

ucc_collective_init
Collective Operations, 52

ucc_collective_init_and_post
Collective Operations, 53

UCC_COLLECTIVE_INIT_AND_POST_ORDERED
Team abstraction data-structures, 42

UCC_COLLECTIVE_INIT_AND_POST_UNORDERED
Team abstraction data-structures, 42

UCC_COLLECTIVE_INIT_ORDERED
Team abstraction data-structures, 42

UCC_COLLECTIVE_INIT_UNORDERED
Team abstraction data-structures, 42

ucc_collective_post
Collective Operations, 52

UCC_COLLECTIVE_POST_ORDERED
Team abstraction data-structures, 42

UCC_COLLECTIVE_POST_UNORDERED
Team abstraction data-structures, 42

ucc_collective_test
Collective Operations, 53

ucc_collective_triggered_post
Events and Triggered Operations, 58

UCC_CONFIG_PRINT_CONFIG
Utility Operations, 59

UCC_CONFIG_PRINT_DOC
Utility Operations, 60

ucc_config_print_flags_t
Utility Operations, 59

UCC_CONFIG_PRINT_HEADER
Utility Operations, 60

UCC_CONFIG_PRINT_HIDDEN
Utility Operations, 60

ucc_context_addr_h
Team abstraction data-structures, 40

ucc_context_addr_len_t
Team abstraction data-structures, 40

ucc_context_attr, 30
ucc_context_attr_field

Context abstraction data-structures, 31
UCC_CONTEXT_ATTR_FIELD_CTX_ADDR

Context abstraction data-structures, 32
UCC_CONTEXT_ATTR_FIELD_CTX_ADDR_LEN

Context abstraction data-structures, 32
UCC_CONTEXT_ATTR_FIELD_SYNC_TYPE

Context abstraction data-structures, 32
UCC_CONTEXT_ATTR_FIELD_TYPE

Context abstraction data-structures, 31
UCC_CONTEXT_ATTR_FIELD_WORK_BUFFER_SIZE

Context abstraction data-structures, 32
ucc_context_attr_t

Context abstraction data-structures, 30
ucc_context_config_h

Context abstraction data-structures, 31
ucc_context_config_modify

Context abstraction routines, 33
ucc_context_config_print

Context abstraction routines, 33
ucc_context_config_read

Context abstraction routines, 32
ucc_context_config_release

Context abstraction routines, 33
ucc_context_create

Context abstraction routines, 34
ucc_context_destroy

Context abstraction routines, 35
UCC_CONTEXT_EXCLUSIVE

Context abstraction data-structures, 31
ucc_context_get_attr

Context abstraction routines, 35
ucc_context_h

Context abstraction data-structures, 31
UCC_CONTEXT_PARAM_FIELD_ID

Context abstraction data-structures, 31
UCC_CONTEXT_PARAM_FIELD_MEM_PARAMS

Context abstraction data-structures, 31
UCC_CONTEXT_PARAM_FIELD_OOB

Context abstraction data-structures, 31
UCC_CONTEXT_PARAM_FIELD_SYNC_TYPE

Context abstraction data-structures, 31
UCC_CONTEXT_PARAM_FIELD_TYPE

Context abstraction data-structures, 31
ucc_context_params, 29
ucc_context_params_field

Context abstraction data-structures, 31
ucc_context_params_t

Context abstraction data-structures, 30
ucc_context_progress

Context abstraction routines, 34
UCC_CONTEXT_SHARED

Context abstraction data-structures, 31
ucc_context_type_t

Context abstraction data-structures, 31
ucc_count_t

Collective operations data-structures, 47
ucc_datatype_t

Datatypes data-structures and functions, 21
ucc_dt_create_generic

Datatypes data-structures and functions, 22
ucc_dt_destroy

Datatypes data-structures and functions, 22
ucc_ee_ack_event

Events and Triggered Operations, 57

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

INDEX 71

UCC_EE_CPU_THREAD
Events and Triggered operations' data-structures,

55
ucc_ee_create

Events and Triggered Operations, 56
UCC_EE_CUDA_STREAM

Events and Triggered operations' data-structures,
55

ucc_ee_destroy
Events and Triggered Operations, 57

UCC_EE_FIRST
Events and Triggered operations' data-structures,

55
ucc_ee_get_event

Events and Triggered Operations, 57
UCC_EE_LAST

Events and Triggered operations' data-structures,
55

ucc_ee_params, 54
ucc_ee_params_t

Events and Triggered operations' data-structures,
55

UCC_EE_ROCM_STREAM
Events and Triggered operations' data-structures,

55
ucc_ee_set_event

Events and Triggered Operations, 58
ucc_ee_type

Events and Triggered operations' data-structures,
55

ucc_ee_type_t
Events and Triggered operations' data-structures,

55
UCC_EE_UNKNOWN

Events and Triggered operations' data-structures,
56

ucc_ee_wait
Events and Triggered Operations, 58

UCC_EP_MAP_ARRAY
Team abstraction data-structures, 42

ucc_ep_map_array, 37
UCC_EP_MAP_CB

Team abstraction data-structures, 42
ucc_ep_map_cb, 61

cb, 61
cb_ctx, 61

UCC_EP_MAP_FULL
Team abstraction data-structures, 42

UCC_EP_MAP_STRIDED
Team abstraction data-structures, 42

ucc_ep_map_strided, 37
ucc_ep_map_t, 37

Team abstraction data-structures, 40
ucc_ep_map_t.__unnamed2__, 39
ucc_ep_map_type_t

Team abstraction data-structures, 42
ucc_ep_range_type_t

Team abstraction data-structures, 42

UCC_ERR_INVALID_PARAM
Utility Operations, 60

UCC_ERR_LAST
Utility Operations, 60

UCC_ERR_NO_MEMORY
Utility Operations, 60

UCC_ERR_NO_MESSAGE
Utility Operations, 60

UCC_ERR_NO_RESOURCE
Utility Operations, 60

UCC_ERR_NOT_FOUND
Utility Operations, 60

UCC_ERR_NOT_IMPLEMENTED
Utility Operations, 60

UCC_ERR_NOT_SUPPORTED
Utility Operations, 60

UCC_ERR_TIMED_OUT
Utility Operations, 60

UCC_ERR_TYPE_GLOBAL
Collective operations data-structures, 49

UCC_ERR_TYPE_LOCAL
Collective operations data-structures, 49

ucc_error_type_t
Collective operations data-structures, 49

ucc_ev_t
Events and Triggered operations' data-structures,

55
ucc_event, 54
UCC_EVENT_COLLECTIVE_COMPLETE

Events and Triggered operations' data-structures,
55

UCC_EVENT_COLLECTIVE_POST
Events and Triggered operations' data-structures,

55
UCC_EVENT_COMPUTE_COMPLETE

Events and Triggered operations' data-structures,
55

UCC_EVENT_OVERFLOW
Events and Triggered operations' data-structures,

55
ucc_event_type

Events and Triggered operations' data-structures,
55

ucc_event_type_t
Events and Triggered operations' data-structures,

55
ucc_finalize

Library initialization and finalization routines, 27
ucc_generic_dt_ops, 62

contig_size, 62
flags, 62
mask, 62

ucc_generic_dt_ops.reduce, 63
cb, 63
cb_ctx, 63

ucc_generic_dt_ops_field
Datatypes data-structures and functions, 21

UCC_GENERIC_DT_OPS_FIELD_FLAGS

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

INDEX 72

Datatypes data-structures and functions, 21
UCC_GENERIC_DT_OPS_FLAG_CONTIG

Datatypes data-structures and functions, 22
UCC_GENERIC_DT_OPS_FLAG_REDUCE

Datatypes data-structures and functions, 22
ucc_generic_dt_ops_flags_t

Datatypes data-structures and functions, 21
ucc_generic_dt_ops_t

Datatypes data-structures and functions, 21
ucc_get_version

Library initialization and finalization routines, 27
ucc_get_version_string

Library initialization and finalization routines, 27
ucc_init

Library initialization and finalization routines, 27
UCC_INPROGRESS

Utility Operations, 60
ucc_lib_attr, 16
ucc_lib_attr_field

Library initialization data-structures, 19
UCC_LIB_ATTR_FIELD_COLL_TYPES

Library initialization data-structures, 19
UCC_LIB_ATTR_FIELD_REDUCTION_TYPES

Library initialization data-structures, 19
UCC_LIB_ATTR_FIELD_SYNC_TYPE

Library initialization data-structures, 19
UCC_LIB_ATTR_FIELD_THREAD_MODE

Library initialization data-structures, 19
ucc_lib_attr_t

Library initialization data-structures, 16
ucc_lib_config_h

Library initialization data-structures, 17
ucc_lib_config_modify

Library initialization and finalization routines, 26
ucc_lib_config_print

Library initialization and finalization routines, 26
ucc_lib_config_read

Library initialization and finalization routines, 25
ucc_lib_config_release

Library initialization and finalization routines, 26
ucc_lib_get_attr

Library initialization and finalization routines, 28
ucc_lib_h

Library initialization data-structures, 17
UCC_LIB_PARAM_FIELD_COLL_TYPES

Library initialization data-structures, 19
UCC_LIB_PARAM_FIELD_REDUCTION_TYPES

Library initialization data-structures, 19
UCC_LIB_PARAM_FIELD_SYNC_TYPE

Library initialization data-structures, 19
UCC_LIB_PARAM_FIELD_THREAD_MODE

Library initialization data-structures, 19
ucc_lib_params, 15
ucc_lib_params_field

Library initialization data-structures, 19
ucc_lib_params_t

Library initialization data-structures, 16
ucc_mem_h

Collective Operations, 52
ucc_mem_map, 29
ucc_mem_map_params, 29
ucc_mem_map_params_t

Context abstraction data-structures, 30
ucc_mem_map_t

Context abstraction data-structures, 30
ucc_memory_type

Collective operations data-structures, 47
UCC_MEMORY_TYPE_CUDA

Collective operations data-structures, 47
UCC_MEMORY_TYPE_CUDA_MANAGED

Collective operations data-structures, 47
UCC_MEMORY_TYPE_HOST

Collective operations data-structures, 47
UCC_MEMORY_TYPE_LAST

Collective operations data-structures, 48
UCC_MEMORY_TYPE_ROCM

Collective operations data-structures, 47
UCC_MEMORY_TYPE_ROCM_MANAGED

Collective operations data-structures, 48
ucc_memory_type_t

Collective operations data-structures, 47
UCC_MEMORY_TYPE_UNKNOWN

Collective operations data-structures, 48
UCC_NO_SYNC_COLLECTIVES

Library initialization data-structures, 19
UCC_OK

Utility Operations, 60
ucc_oob_coll, 63

allgather, 63
coll_info, 64
n_oob_eps, 64
oob_ep, 64
req_free, 64
req_test, 64

ucc_oob_coll_t
Context abstraction data-structures, 30

UCC_OP_AVG
Library initialization data-structures, 18

UCC_OP_BAND
Library initialization data-structures, 18

UCC_OP_BOR
Library initialization data-structures, 18

UCC_OP_BXOR
Library initialization data-structures, 18

UCC_OP_LAND
Library initialization data-structures, 18

UCC_OP_LAST
Library initialization data-structures, 18

UCC_OP_LOR
Library initialization data-structures, 18

UCC_OP_LXOR
Library initialization data-structures, 18

UCC_OP_MAX
Library initialization data-structures, 18

UCC_OP_MAXLOC
Library initialization data-structures, 18

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

INDEX 73

UCC_OP_MIN
Library initialization data-structures, 18

UCC_OP_MINLOC
Library initialization data-structures, 18

UCC_OP_PROD
Library initialization data-structures, 18

UCC_OP_SUM
Library initialization data-structures, 18

UCC_OPERATION_INITIALIZED
Utility Operations, 60

ucc_p2p_conn_t
Team abstraction data-structures, 40

ucc_post_ordering_t
Team abstraction data-structures, 41

ucc_reduce_cb_params, 20
ucc_reduce_cb_params_t

Datatypes data-structures and functions, 21
ucc_reduction_op_t

Library initialization data-structures, 17
ucc_status_string

Utility Operations, 60
ucc_status_t

Utility Operations, 60
UCC_SYNC_COLLECTIVES

Library initialization data-structures, 19
ucc_team_attr, 39
ucc_team_attr_field

Team abstraction data-structures, 41
UCC_TEAM_ATTR_FIELD_EP

Team abstraction data-structures, 41
UCC_TEAM_ATTR_FIELD_EP_RANGE

Team abstraction data-structures, 41
UCC_TEAM_ATTR_FIELD_EPS

Team abstraction data-structures, 41
UCC_TEAM_ATTR_FIELD_MEM_PARAMS

Team abstraction data-structures, 41
UCC_TEAM_ATTR_FIELD_OUTSTANDING_CALLS

Team abstraction data-structures, 41
UCC_TEAM_ATTR_FIELD_POST_ORDERING

Team abstraction data-structures, 41
UCC_TEAM_ATTR_FIELD_SIZE

Team abstraction data-structures, 41
UCC_TEAM_ATTR_FIELD_SYNC_TYPE

Team abstraction data-structures, 41
ucc_team_attr_t

Team abstraction data-structures, 40
ucc_team_create_from_parent

Team abstraction routines, 44
ucc_team_create_post

Team abstraction routines, 43
ucc_team_create_test

Team abstraction routines, 43
ucc_team_destroy

Team abstraction routines, 44
UCC_TEAM_FLAG_COLL_WORK_BUFFER

Team abstraction data-structures, 41
ucc_team_flags

Team abstraction data-structures, 41

ucc_team_get_attr
Team abstraction routines, 44

ucc_team_h
Team abstraction data-structures, 40

ucc_team_p2p_conn, 64
conn_ctx, 64
conn_info_lookup, 64
conn_info_release, 64
req_free, 65
req_test, 65

ucc_team_p2p_conn_t
Team abstraction data-structures, 40

UCC_TEAM_PARAM_FIELD_EP
Team abstraction data-structures, 41

UCC_TEAM_PARAM_FIELD_EP_LIST
Team abstraction data-structures, 41

UCC_TEAM_PARAM_FIELD_EP_MAP
Team abstraction data-structures, 41

UCC_TEAM_PARAM_FIELD_EP_RANGE
Team abstraction data-structures, 41

UCC_TEAM_PARAM_FIELD_FLAGS
Team abstraction data-structures, 41

UCC_TEAM_PARAM_FIELD_ID
Team abstraction data-structures, 41

UCC_TEAM_PARAM_FIELD_MEM_PARAMS
Team abstraction data-structures, 41

UCC_TEAM_PARAM_FIELD_OOB
Team abstraction data-structures, 41

UCC_TEAM_PARAM_FIELD_ORDERING
Team abstraction data-structures, 41

UCC_TEAM_PARAM_FIELD_OUTSTANDING_COLLS
Team abstraction data-structures, 41

UCC_TEAM_PARAM_FIELD_P2P_CONN
Team abstraction data-structures, 41

UCC_TEAM_PARAM_FIELD_SYNC_TYPE
Team abstraction data-structures, 41

UCC_TEAM_PARAM_FIELD_TEAM_SIZE
Team abstraction data-structures, 41

ucc_team_params, 37
ucc_team_params_field

Team abstraction data-structures, 40
ucc_team_params_t

Team abstraction data-structures, 40
UCC_THREAD_FUNNELED

Library initialization data-structures, 18
ucc_thread_mode_t

Library initialization data-structures, 18
UCC_THREAD_MULTIPLE

Library initialization data-structures, 18
UCC_THREAD_SINGLE

Library initialization data-structures, 18
unpack

Datatypes data-structures and functions, 24
Utility Operations, 59

UCC_CONFIG_PRINT_CONFIG, 59
UCC_CONFIG_PRINT_DOC, 60
ucc_config_print_flags_t, 59
UCC_CONFIG_PRINT_HEADER, 60

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

INDEX 74

UCC_CONFIG_PRINT_HIDDEN, 60
UCC_ERR_INVALID_PARAM, 60
UCC_ERR_LAST, 60
UCC_ERR_NO_MEMORY, 60
UCC_ERR_NO_MESSAGE, 60
UCC_ERR_NO_RESOURCE, 60
UCC_ERR_NOT_FOUND, 60
UCC_ERR_NOT_IMPLEMENTED, 60
UCC_ERR_NOT_SUPPORTED, 60
UCC_ERR_TIMED_OUT, 60
UCC_INPROGRESS, 60
UCC_OK, 60
UCC_OPERATION_INITIALIZED, 60
ucc_status_string, 60
ucc_status_t, 60

c○ 2023 Unified Collective Communication (UCC). All rights reserved.

	1 Unified Collective Communications (UCC) Library Specification
	2 Design
	2.0.1 Component Diagram

	3 Library Initialization and Finalization
	4 Communication Context
	5 Teams
	6 Types of Collective Operations
	7 Execution Engine and Events
	7.0.1 Triggered Operations
	7.0.2 Interaction between an User Thread and Event-driven UCC

	8 Module Documentation
	8.1 Library initialization data-structures
	8.1.1 Detailed Description
	8.1.2 Data Structure Documentation
	8.1.2.1 struct ucc_lib_params
	8.1.2.2 struct ucc_lib_attr

	8.1.3 Typedef Documentation
	8.1.3.1 ucc_lib_params_t
	8.1.3.2 ucc_lib_attr_t
	8.1.3.3 ucc_lib_h
	8.1.3.4 ucc_lib_config_h

	8.1.4 Enumeration Type Documentation
	8.1.4.1 ucc_coll_type_t
	8.1.4.2 ucc_reduction_op_t
	8.1.4.3 ucc_thread_mode_t
	8.1.4.4 ucc_coll_sync_type_t
	8.1.4.5 ucc_lib_params_field
	8.1.4.6 ucc_lib_attr_field

	8.2 Datatypes data-structures and functions
	8.2.1 Detailed Description
	8.2.2 Data Structure Documentation
	8.2.2.1 struct ucc_reduce_cb_params

	8.2.3 Typedef Documentation
	8.2.3.1 ucc_datatype_t
	8.2.3.2 ucc_reduce_cb_params_t
	8.2.3.3 ucc_generic_dt_ops_t

	8.2.4 Enumeration Type Documentation
	8.2.4.1 ucc_generic_dt_ops_field
	8.2.4.2 ucc_generic_dt_ops_flags_t

	8.2.5 Function Documentation
	8.2.5.1 ucc_dt_create_generic()
	8.2.5.2 ucc_dt_destroy()

	8.2.6 Variable Documentation
	8.2.6.1 start_pack
	8.2.6.2 start_unpack
	8.2.6.3 packed_size
	8.2.6.4 pack
	8.2.6.5 unpack
	8.2.6.6 finish
	8.2.6.7
	8.2.6.8
	8.2.6.9

	8.3 Library initialization and finalization routines
	8.3.1 Detailed Description
	8.3.2 Function Documentation
	8.3.2.1 ucc_lib_config_read()
	8.3.2.2 ucc_lib_config_release()
	8.3.2.3 ucc_lib_config_print()
	8.3.2.4 ucc_lib_config_modify()
	8.3.2.5 ucc_get_version()
	8.3.2.6 ucc_get_version_string()
	8.3.2.7 ucc_init()
	8.3.2.8 ucc_finalize()
	8.3.2.9 ucc_lib_get_attr()

	8.4 Context abstraction data-structures
	8.4.1 Detailed Description
	8.4.2 Data Structure Documentation
	8.4.2.1 struct ucc_mem_map
	8.4.2.2 struct ucc_mem_map_params
	8.4.2.3 struct ucc_context_params
	8.4.2.4 struct ucc_context_attr

	8.4.3 Typedef Documentation
	8.4.3.1 ucc_oob_coll_t
	8.4.3.2 ucc_mem_map_t
	8.4.3.3 ucc_mem_map_params_t
	8.4.3.4 ucc_context_params_t
	8.4.3.5 ucc_context_attr_t
	8.4.3.6 ucc_context_h
	8.4.3.7 ucc_context_config_h

	8.4.4 Enumeration Type Documentation
	8.4.4.1 ucc_context_type_t
	8.4.4.2 ucc_context_params_field
	8.4.4.3 ucc_context_attr_field

	8.5 Context abstraction routines
	8.5.1 Detailed Description
	8.5.2 Function Documentation
	8.5.2.1 ucc_context_config_read()
	8.5.2.2 ucc_context_config_release()
	8.5.2.3 ucc_context_config_print()
	8.5.2.4 ucc_context_config_modify()
	8.5.2.5 ucc_context_create()
	8.5.2.6 ucc_context_progress()
	8.5.2.7 ucc_context_destroy()
	8.5.2.8 ucc_context_get_attr()

	8.6 Team abstraction data-structures
	8.6.1 Detailed Description
	8.6.2 Data Structure Documentation
	8.6.2.1 struct ucc_ep_map_strided
	8.6.2.2 struct ucc_ep_map_array
	8.6.2.3 struct ucc_ep_map_t
	8.6.2.4 struct ucc_team_params
	8.6.2.5 struct ucc_team_attr
	8.6.2.6 union ucc_ep_map_t.__unnamed2__

	8.6.3 Typedef Documentation
	8.6.3.1 ucc_team_p2p_conn_t
	8.6.3.2 ucc_ep_map_t
	8.6.3.3 ucc_team_params_t
	8.6.3.4 ucc_team_attr_t
	8.6.3.5 ucc_team_h
	8.6.3.6 ucc_p2p_conn_t
	8.6.3.7 ucc_context_addr_h
	8.6.3.8 ucc_context_addr_len_t

	8.6.4 Enumeration Type Documentation
	8.6.4.1 ucc_team_params_field
	8.6.4.2 ucc_team_attr_field
	8.6.4.3 ucc_team_flags
	8.6.4.4 ucc_post_ordering_t
	8.6.4.5 ucc_ep_range_type_t
	8.6.4.6 ucc_ep_map_type_t

	8.7 Team abstraction routines
	8.7.1 Detailed Description
	8.7.2 Function Documentation
	8.7.2.1 ucc_team_create_post()
	8.7.2.2 ucc_team_create_test()
	8.7.2.3 ucc_team_destroy()
	8.7.2.4 ucc_team_get_attr()
	8.7.2.5 ucc_team_create_from_parent()

	8.8 Collective operations data-structures
	8.8.1 Detailed Description
	8.8.2 Data Structure Documentation
	8.8.2.1 struct ucc_coll_buffer_info_v
	8.8.2.2 struct ucc_coll_buffer_info

	8.8.3 Typedef Documentation
	8.8.3.1 ucc_memory_type_t
	8.8.3.2 ucc_coll_buffer_info_v_t
	8.8.3.3 ucc_coll_buffer_info_t
	8.8.3.4 ucc_coll_req_h
	8.8.3.5 ucc_coll_callback_t
	8.8.3.6 ucc_count_t
	8.8.3.7 ucc_aint_t
	8.8.3.8 ucc_coll_id_t

	8.8.4 Enumeration Type Documentation
	8.8.4.1 ucc_memory_type
	8.8.4.2 ucc_coll_args_flags_t
	8.8.4.3 ucc_coll_args_hints_t
	8.8.4.4 ucc_error_type_t
	8.8.4.5 ucc_coll_args_field

	8.9 Collective Operations
	8.9.1 Detailed Description
	8.9.2 Data Structure Documentation
	8.9.2.1 struct ucc_coll_args
	8.9.2.2 union ucc_coll_args.src
	8.9.2.3 union ucc_coll_args.dst
	8.9.2.4 struct ucc_coll_args.active_set

	8.9.3 Typedef Documentation
	8.9.3.1 ucc_coll_args_t
	8.9.3.2 ucc_mem_h

	8.9.4 Function Documentation
	8.9.4.1 ucc_collective_init()
	8.9.4.2 ucc_collective_post()
	8.9.4.3 ucc_collective_init_and_post()
	8.9.4.4 ucc_collective_test()
	8.9.4.5 ucc_collective_finalize()

	8.10 Events and Triggered operations' data-structures
	8.10.1 Detailed Description
	8.10.2 Data Structure Documentation
	8.10.2.1 struct ucc_event
	8.10.2.2 struct ucc_ee_params

	8.10.3 Typedef Documentation
	8.10.3.1 ucc_event_type_t
	8.10.3.2 ucc_ee_type_t
	8.10.3.3 ucc_ev_t
	8.10.3.4 ucc_ee_params_t

	8.10.4 Enumeration Type Documentation
	8.10.4.1 ucc_event_type
	8.10.4.2 ucc_ee_type

	8.11 Events and Triggered Operations
	8.11.1 Detailed Description
	8.11.2 Function Documentation
	8.11.2.1 ucc_ee_create()
	8.11.2.2 ucc_ee_destroy()
	8.11.2.3 ucc_ee_get_event()
	8.11.2.4 ucc_ee_ack_event()
	8.11.2.5 ucc_ee_set_event()
	8.11.2.6 ucc_ee_wait()
	8.11.2.7 ucc_collective_triggered_post()

	8.12 Utility Operations
	8.12.1 Detailed Description
	8.12.2 Enumeration Type Documentation
	8.12.2.1 ucc_config_print_flags_t
	8.12.2.2 ucc_status_t

	8.12.3 Function Documentation
	8.12.3.1 ucc_status_string()

	9 Data Structure Documentation
	9.1 ucc_coll_callback Struct Reference
	9.1.1 Detailed Description
	9.1.2 Field Documentation
	9.1.2.1 cb
	9.1.2.2 data

	9.2 ucc_ep_map_cb Struct Reference
	9.2.1 Field Documentation
	9.2.1.1 cb
	9.2.1.2 cb_ctx

	9.3 ucc_generic_dt_ops Struct Reference
	9.3.1 Detailed Description
	9.3.2 Field Documentation
	9.3.2.1 mask
	9.3.2.2 flags
	9.3.2.3 contig_size

	9.4 ucc_generic_dt_ops.reduce Struct Reference
	9.4.1 Detailed Description
	9.4.2 Field Documentation
	9.4.2.1 cb
	9.4.2.2 cb_ctx

	9.5 ucc_oob_coll Struct Reference
	9.5.1 Field Documentation
	9.5.1.1 allgather
	9.5.1.2 req_test
	9.5.1.3 req_free
	9.5.1.4 coll_info
	9.5.1.5 n_oob_eps
	9.5.1.6 oob_ep

	9.6 ucc_team_p2p_conn Struct Reference
	9.6.1 Field Documentation
	9.6.1.1 conn_info_lookup
	9.6.1.2 conn_info_release
	9.6.1.3 conn_ctx
	9.6.1.4 req_test
	9.6.1.5 req_free

	Index

