
Unified Communication X (UCX)

API Standard
Version 1.19

Contents

1 Preface 1
1.1 Scope of the Document . 1
1.2 Audience . 1
1.3 Document Status . 1
1.4 License . 1

2 Introduction 3
2.1 Motivation . 3
2.2 UCX . 3

3 Design 5
3.1 UCS . 5
3.2 UCT . 5
3.3 UCP . 6

4 Conventions and Notations 7
4.1 Blocking Behavior . 7
4.2 Non-blocking Behavior . 7
4.3 Fairness . 7
4.4 Interaction with Signal Handler Functions . 7

5 Deprecated List 9

6 Module Documentation 13
6.1 Unified Communication Protocol (UCP) API . 13

6.1.1 Detailed Description . 13
6.1.2 UCP Application Context . 13

6.1.2.1 Detailed Description . 15
6.1.2.2 Data Structure Documentation . 15
6.1.2.3 Macro Definition Documentation . 18
6.1.2.4 Typedef Documentation . 18
6.1.2.5 Enumeration Type Documentation . 19
6.1.2.6 Function Documentation . 20

6.1.3 UCP Worker . 23
6.1.3.1 Detailed Description . 25
6.1.3.2 Data Structure Documentation . 26
6.1.3.3 Typedef Documentation . 30
6.1.3.4 Enumeration Type Documentation . 33
6.1.3.5 Function Documentation . 36

6.1.4 UCP Memory routines . 45
6.1.4.1 Detailed Description . 47
6.1.4.2 Data Structure Documentation . 48
6.1.4.3 Typedef Documentation . 50
6.1.4.4 Enumeration Type Documentation . 51
6.1.4.5 Function Documentation . 54

6.1.5 UCP Wake-up routines . 61
6.1.5.1 Detailed Description . 62

iv CONTENTS

6.1.5.2 Function Documentation . 62
6.1.6 UCP Endpoint . 65

6.1.6.1 Detailed Description . 67
6.1.6.2 Data Structure Documentation . 67
6.1.6.3 Typedef Documentation . 70
6.1.6.4 Enumeration Type Documentation . 72
6.1.6.5 Function Documentation . 76

6.1.7 UCP Communication routines . 81
6.1.7.1 Detailed Description . 85
6.1.7.2 Data Structure Documentation . 85
6.1.7.3 Typedef Documentation . 86
6.1.7.4 Enumeration Type Documentation . 89
6.1.7.5 Function Documentation . 92

6.1.8 UCP Configuration . 125
6.1.8.1 Detailed Description . 125
6.1.8.2 Data Structure Documentation . 126
6.1.8.3 Typedef Documentation . 127
6.1.8.4 Function Documentation . 128

6.1.9 UCP Data type routines . 129
6.1.9.1 Detailed Description . 131
6.1.9.2 Data Structure Documentation . 131
6.1.9.3 Macro Definition Documentation . 131
6.1.9.4 Typedef Documentation . 132
6.1.9.5 Enumeration Type Documentation . 133
6.1.9.6 Function Documentation . 133
6.1.9.7 Variable Documentation . 134

6.2 Unified Communication Transport (UCT) API . 136
6.2.1 Detailed Description . 136
6.2.2 UCT Communication Resource . 137

6.2.2.1 Detailed Description . 141
6.2.2.2 Data Structure Documentation . 142
6.2.2.3 Typedef Documentation . 152
6.2.2.4 Enumeration Type Documentation . 157
6.2.2.5 Function Documentation . 162
6.2.2.6 UCT interface operations and capabilities . 175
6.2.2.7 UCT interface for asynchronous event capabilities 180

6.2.3 UCT Communication Context . 181
6.2.3.1 Detailed Description . 181
6.2.3.2 Enumeration Type Documentation . 181
6.2.3.3 Function Documentation . 182

6.2.4 UCT Memory Domain . 185
6.2.4.1 Detailed Description . 187
6.2.4.2 Data Structure Documentation . 187
6.2.4.3 Typedef Documentation . 190
6.2.4.4 Enumeration Type Documentation . 190
6.2.4.5 Function Documentation . 193

6.2.5 UCT Active messages . 198
6.2.5.1 Detailed Description . 199
6.2.5.2 Typedef Documentation . 199
6.2.5.3 Enumeration Type Documentation . 200
6.2.5.4 Function Documentation . 201

6.2.6 UCT Remote memory access operations . 204
6.2.6.1 Detailed Description . 204
6.2.6.2 Function Documentation . 204

6.2.7 UCT Atomic operations . 206
6.2.7.1 Detailed Description . 206
6.2.7.2 Function Documentation . 206

6.2.8 UCT Tag matching operations . 208

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

CONTENTS v

6.2.8.1 Detailed Description . 208
6.2.8.2 Typedef Documentation . 209
6.2.8.3 Function Documentation . 210

6.2.9 UCT client-server operations . 215
6.2.9.1 Detailed Description . 217
6.2.9.2 Data Structure Documentation . 218
6.2.9.3 Typedef Documentation . 221
6.2.9.4 Enumeration Type Documentation . 224
6.2.9.5 Function Documentation . 227

6.3 Unified Communication Services (UCS) API . 232
6.3.1 Detailed Description . 232
6.3.2 UCS Communication Resource . 232

6.3.2.1 Detailed Description . 233
6.3.2.2 Data Structure Documentation . 233
6.3.2.3 Typedef Documentation . 233
6.3.2.4 Enumeration Type Documentation . 234
6.3.2.5 Function Documentation . 236

7 Data Structure Documentation 241
7.1 ucp_generic_dt_ops Struct Reference . 241

7.1.1 Detailed Description . 241
7.2 uct_tag_context Struct Reference . 241

7.2.1 Detailed Description . 242
7.2.2 Field Documentation . 242

7.2.2.1 tag_consumed_cb . 242
7.2.2.2 completed_cb . 242
7.2.2.3 rndv_cb . 242
7.2.2.4 priv . 243

8 Examples 245
8.1 ucp_hello_world.c . 245
8.2 ucp_client_server.c . 254
8.3 uct_hello_world.c . 266

Index 277

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

Chapter 1

Preface

1.1 Scope of the Document

This document describes the UCX programming interface. The programming interface exposes a high performance
communication API, which provides basic building blocks for PGAS, Message Passing Interface (MPI), Big-Data,
Analytics, File I/O, and storage library developers.

1.2 Audience

This manual is intended for programmers who want to develop parallel programming models like OpenSHMEM,
MPI, UPC, Chapel, etc. The manual assumes that the reader is familiar with the following:

• Basic concepts of two-sided, one-sided, atomic, and collective operations

• C programming language

1.3 Document Status

This section briefly describes a list of open issues in the UCX specification.

• UCP API - work in progress

• UCT API - work in progress

1.4 License

UCX project follows open source development model and the software is licensed under BSD-3 license.

2 Preface

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

Chapter 2

Introduction

2.1 Motivation

A communication middleware abstracts the vendor-specific software and hardware interfaces. They bridge the
semantic and functionality gap between the programming models and the software and hardware network interfaces
by providing data transfer interfaces and implementation, optimized protocols for data transfer between various
memories, and managing network resources. There are many communication middleware APIs and libraries to
support parallel programming models such as MPI, OpenSHMEM, and task-based models.

Current communication middleware designs typically take two approaches. First, communication middleware such
as Intel's PSM (previously Qlogic), Mellanox's MXM, and IBM's PAMI provide high-performance implementations for
specific network hardware. Second, communication middleware such as VMI, Cactus, ARMCI, GASNet, and Open
MPI are tightly coupled to a specific programming model. Communication middleware designed with either of this
design approach requires significant porting effort to move a new network interface or programming model.

To achieve functional and performance portability across architectures and programming models, we introduce
Unified Communication X (UCX).

2.2 UCX

Unified Communication X (UCX) is a set of network APIs and their implementations for high throughput comput-
ing. UCX is a combined effort of national laboratories, industry, and academia to design and implement a high-
performing and highly-scalable network stack for next generation applications and systems. UCX design provides
the ability to tailor its APIs and network functionality to suit a wide variety of application domains. We envision that
these APIs will satisfy the networking needs of many programming models such as the Message Passing Interface
(MPI), OpenSHMEM, Partitioned Global Address Space (PGAS) languages, task-based paradigms, and I/O bound
applications.

The initial focus is on supporting semantics such as point-to-point communications (one-sided and two-sided),
collective communication, and remote atomic operations required for popular parallel programming models. Also,
the initial UCX reference implementation is targeted to support current network technologies such as:

• Open Fabrics - InfiniBand (Mellanox, Qlogic, IBM), iWARP, RoCE

• Cray uGNI - GEMINI and ARIES interconnects

• Shared memory (MMAP, Posix, CMA, KNEM, XPMEM, etc.)

• Ethernet (TCP/UDP)

UCX design goals are focused on performance and scalability, while efficiently supporting popular and emerging
programming models.

4 Introduction

UCX's API and design do not impose architectural constraints on the network hardware nor require any specific
capabilities to the support the programming model functionality. This is achieved by keeping the API flexible and
ability to support the missing functionality efficiently in the software.

Extreme scalability is an important design goal for UCX. To achieve this, UCX follows these design principles:

• Minimal memory consumption : Design avoids data-structures that scale with the number of processing
elements (i.e., order N data structures), and share resources among multiple programming models.

• Low-latency Interfaces: Design provides at least two sets of APIs with one set focused on the performance,
and the other focused on functionality.

• High bandwidth - With minimal software overhead combined and support for multi-rail and multi-device capa-
bilities, the design provides all the hooks that are necessary for exploiting hardware bandwidth capabilities.

• Asynchronous Progress: API provides non-blocking communication interfaces and design supports asyn-
chronous progress required for communication and computation overlap

• Resilience - the API exposes communication control hooks required for fault tolerant communication library
implementation.

UCX design provides native support for hybrid programming models. The design enables resource sharing, optimal
memory usage, and progress engine coordination to efficiently implement hybrid programming models. For exam-
ple, hybrid applications that use both OpenSHMEM and MPI programming models will be able to select between
a single-shared UCX network context or a stand alone UCX network context for each one of them. Such flexibility,
optimized resource sharing, and reduced memory consumption, improve network and application performance.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

Chapter 3

Design

The UCX framework consists of the three main components: UC-Services (UCS), UC-Transports (UCT), and UC-
Protocols (UCP). Each one of these components exports a public API, and can be used as a stand-alone library.

UCT (Hardware Transports) - Low Level API
 RMA, Atomic, Tag-Matching, Send/Recv, Active Messages

Transport for RDMA VERBs driver
(InfiniBand, ROCE, OPA)

RC UD DCT

Transport for intra-node host memory communication

SYSV POSIX KNEM CMA XPMEM

Transport for
GPGPU

NVIDIA
CUDA

Transport for
Gemini/Aries

drivers

GNI

UCP (Protocols) - High Level API
Transport selection, cross-transport multi-rail, fragmentation, software protocols for operations that are not supported by hardware

Message Passing API Domain:
Tag-Matching, Rendezvous

PGAS API Domain:
RMAs, Atomics

Task Based API Domain:
Active Messages

I/O API Domain:
Stream

Hardware

MPICH, Open-MPI, etc. OpenSHMEM, UPC, CAF, X10,
Chapel, etc. Parsec, OCR, Legion, etc. TensorFlow, Burst Buffer, etc.

Applications (HPC, AI, ML, BigData)

UC
X

UCS (Services)
Common utilities

Utilities Data
Structures

Memory
Management

RDMA Verbs Driver Cray Driver OS Kernel ROCm/CUDA

UCM
Memory
Services

Memory
Hooks

OS Kernel OS Kernel

Ethernet

TCP/IP
Sockets

AMD
ROCm

Figure 3.1: UCX Framework Architecture

3.1 UCS

UCS is a service layer that provides the necessary functionality for implementing portable and efficient utilities. This
layer includes the following services:

• an abstraction for accessing platform specific functionality (atomic operations, thread safety, etc.),

• tools for efficient memory management (memory pools, memory allocators, and memory allocators hooks),

• commonly used data structures (hashes, trees, lists).

3.2 UCT

UCT is a transport layer that abstracts the differences across various hardware architectures and provides a low-
level API that enables the implementation of communication protocols. The primary goal of the layer is to provide
direct and efficient access to hardware network functionality. For this purpose, UCT relies on vendor provided

6 Design

low-level drivers such as uGNI, Verbs, shared memory, ROCM, CUDA. In addition, the layer provides constructs
for communication context management (thread-based and application level), and allocation and management of
device-specific memories including those found in accelerators. In terms of communication APIs, UCT defines
interfaces for immediate (short), buffered copy-and-send (bcopy), and zero-copy (zcopy) communication operations.

Short: This type of operation is optimized for small messages that can be posted and completed in place.

Bcopy: This type of operation is optimized for medium size messages that are typically sent through a so-called
bouncing-buffer. This auxiliary buffer is typically allocated given network constraints and ready for immediate uti-
lization by the hardware. Since a custom data packing routine could be provided, this method can be used for
non-contiguous i/o.

Zcopy: This type of operation exposes zero-copy memory-to-memory communication semantics, which means
that message is sent directly from user buffer, or received directly to user buffer, without being copied between the
network layers.

3.3 UCP

UCP implements higher-level protocols that are typically used by message passing (MPI) and PGAS program-
ming models by using lower-level capabilities exposed through the UCT layer. UCP is provides the following
functionality: ability to select different transports for communication, message fragmentation, multi-rail communi-
cation, and initializing and finalizing the library. Currently, the API has the following classes of interfaces: Ini-
tialization, Remote Memory Access (RMA) communication, Atomic Memory Operations (AMO), Active Message,
Tag-Matching, and Collectives.

Initialization: This subset of interfaces defines the communication context setup, queries the network capabilities,
and initializes the local communication endpoints. The context represented by the UCX context is an abstraction of
the network transport resources. The communication endpoint setup interfaces initialize the UCP endpoint, which is
an abstraction of all the necessary resources associated with a particular connection. The communication endpoints
are used as input to all communication operations to describe the source and destination of the communication.

RMA: This subset of interfaces defines one-sided communication operations such as PUT and GET, required for
implementing low overhead, direct memory access communications constructs needed by both distributed and
shared memory programming models. UCP includes a separate set of interfaces for communicating non-contiguous
data. This functionality was included to support various programming models' communication requirements and
leverage the scatter/gather capabilities of modern network hardware.

AMO: This subset of interfaces provides support for atomically performing operations on the remote memory, an
important class of operations for PGAS programming models, particularly OpenSHMEM.

Tag Matching: This interface supports tag-matching for send-receive semantics which is a key communication
semantic defined by the MPI specification.

Stream : The API provides order and reliable communication semantics. Data is treated as an ordered sequence
of bytes pushed through the connection. In contrast of tag-matching interface, the size of each individual send does
not necessarily have to match the size of each individual receive, as long as the total number of bytes is the same.
This API is designed to match widely used BSD-socket based programming models.

Active Message: A subset of functionality where the incoming packet invokes a sender-specified callback in order
to be processed by the receiving process. As an example, the two-sided MPI interface can easily be implemented
on top of such a concept (TBD: cite openmpi). However, these interfaces are more general and suited for other
programming paradigms where the receiver process does not prepost receives, but expects to react to incoming
packets directly. Like RMA and tag-matching interfaces, the active message interface provides separate APIs for
different message types and non-contiguous data.

Collectives: This subset of interfaces defines group communication and synchronization operations. The collective
operations include barrier, all-to-one, all-to-all, and reduction operations. When possible, we will take advantage of
hardware acceleration for collectives (e.g., InfiniBand Switch collective acceleration).

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

Chapter 4

Conventions and Notations

This section describes the conventions and notations in the UCX specification.

4.1 Blocking Behavior

The blocking UCX routines return only when a UCX operation is complete. After the return, the resources used in
the UCX routine are available for reuse.

4.2 Non-blocking Behavior

The non-blocking UCX routines return immediately, independent of operation completion. After the return, the
resources used for the routines are not necessarily available for reuse.

4.3 Fairness

UCX routines do not guarantee fairness. However, the routines enable UCX consumers to write efficient and fair
programs.

4.4 Interaction with Signal Handler Functions

If UCX routines are invoked from a signal handler function, the behavior of the program is undefined.

8 Conventions and Notations

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

Chapter 5

Deprecated List

Global ucp_am_send_nb (ucp_ep_h ep, uint16_t id, const void ∗buffer, size_t count, ucp_datatype_←↩

t datatype, ucp_send_callback_t cb, unsigned flags)

Use ucp_am_send_nbx instead.

Global ucp_atomic_add32 (ucp_ep_h ep, uint32_t add, uint64_t remote_addr, ucp_rkey_h rkey)

Replaced by ucp_atomic_post with opcode UCP_ATOMIC_POST_OP_ADD.

Global ucp_atomic_add64 (ucp_ep_h ep, uint64_t add, uint64_t remote_addr, ucp_rkey_h rkey)

Replaced by ucp_atomic_post with opcode UCP_ATOMIC_POST_OP_ADD.

Global ucp_atomic_cswap32 (ucp_ep_h ep, uint32_t compare, uint32_t swap, uint64_t remote_addr, ucp←↩

_rkey_h rkey, uint32_t ∗result)

Replaced by ucp_atomic_fetch_nb with opcode UCP_ATOMIC_FETCH_OP_CSWAP.

Global ucp_atomic_cswap64 (ucp_ep_h ep, uint64_t compare, uint64_t swap, uint64_t remote_addr, ucp←↩

_rkey_h rkey, uint64_t ∗result)

Replaced by ucp_atomic_fetch_nb with opcode UCP_ATOMIC_FETCH_OP_CSWAP.

Global ucp_atomic_fadd32 (ucp_ep_h ep, uint32_t add, uint64_t remote_addr, ucp_rkey_h rkey, uint32_t
∗result)

Replaced by ucp_atomic_fetch_nb with opcode UCP_ATOMIC_FETCH_OP_FADD.

Global ucp_atomic_fadd64 (ucp_ep_h ep, uint64_t add, uint64_t remote_addr, ucp_rkey_h rkey, uint64_t
∗result)

Replaced by ucp_atomic_fetch_nb with opcode UCP_ATOMIC_FETCH_OP_FADD.

Global ucp_atomic_fetch_nb (ucp_ep_h ep, ucp_atomic_fetch_op_t opcode, uint64_t value, void ∗result,
size_t op_size, uint64_t remote_addr, ucp_rkey_h rkey, ucp_send_callback_t cb)

Use ucp_atomic_op_nbx with the flag UCP_OP_ATTR_FIELD_REPLY_BUFFER instead.

Global ucp_atomic_fetch_op_t

Use ucp_atomic_op_nbx and ucp_atomic_op_t instead.

Global ucp_atomic_post (ucp_ep_h ep, ucp_atomic_post_op_t opcode, uint64_t value, size_t op_size,
uint64_t remote_addr, ucp_rkey_h rkey)

Use ucp_atomic_op_nbx without the flag UCP_OP_ATTR_FIELD_REPLY_BUFFER instead.

Global ucp_atomic_post_op_t

Use ucp_atomic_op_nbx and ucp_atomic_op_t instead.

Global ucp_atomic_swap32 (ucp_ep_h ep, uint32_t swap, uint64_t remote_addr, ucp_rkey_h rkey, uint32_t
∗result)

Replaced by ucp_atomic_fetch_nb with opcode UCP_ATOMIC_FETCH_OP_SWAP.

Global ucp_atomic_swap64 (ucp_ep_h ep, uint64_t swap, uint64_t remote_addr, ucp_rkey_h rkey, uint64_t
∗result)

Replaced by ucp_atomic_fetch_nb with opcode UCP_ATOMIC_FETCH_OP_SWAP.

10 Deprecated List

Global ucp_disconnect_nb (ucp_ep_h ep)

Replaced by ucp_ep_close_nb.

Global ucp_ep_close_mode

Use ucp_ep_close_nbx and ucp_ep_close_flags_t instead.

Global ucp_ep_close_nb (ucp_ep_h ep, unsigned mode)

Use ucp_ep_close_nbx instead.

Global ucp_ep_destroy (ucp_ep_h ep)

Replaced by ucp_ep_close_nb.

Global ucp_ep_flush (ucp_ep_h ep)

Replaced by ucp_ep_flush_nb.

Global ucp_ep_flush_nb (ucp_ep_h ep, unsigned flags, ucp_send_callback_t cb)

Use ucp_ep_flush_nbx instead.

Global ucp_ep_modify_nb (ucp_ep_h ep, const ucp_ep_params_t ∗params)

Use ucp_listener_conn_handler_t instead of ucp_listener_accept_handler_t, if you have other use case please
submit an issue on https://github.com/openucx/ucx or report to ucx-group@elist.←↩

ornl.gov

Global ucp_get (ucp_ep_h ep, void ∗buffer, size_t length, uint64_t remote_addr, ucp_rkey_h rkey)

Replaced by ucp_get_nb.

Global ucp_get_nb (ucp_ep_h ep, void ∗buffer, size_t length, uint64_t remote_addr, ucp_rkey_h rkey, ucp←↩

_send_callback_t cb)
Use ucp_get_nbx instead.

Global ucp_get_nbi (ucp_ep_h ep, void ∗buffer, size_t length, uint64_t remote_addr, ucp_rkey_h rkey)

Use ucp_get_nbx without passing the flag UCP_OP_ATTR_FIELD_CALLBACK instead. If a request pointer is
returned, release it immediately by ucp_request_free.

Global ucp_listener_accept_handler_t

Replaced by ucp_listener_conn_handler_t.

Global ucp_put (ucp_ep_h ep, const void ∗buffer, size_t length, uint64_t remote_addr, ucp_rkey_h rkey)

Replaced by ucp_put_nb. The following example implements the same functionality using ucp_put_nb :

Global ucp_put_nb (ucp_ep_h ep, const void ∗buffer, size_t length, uint64_t remote_addr, ucp_rkey_h rkey,
ucp_send_callback_t cb)
Use ucp_put_nbx instead.

Global ucp_put_nbi (ucp_ep_h ep, const void ∗buffer, size_t length, uint64_t remote_addr, ucp_rkey_h rkey)

Use ucp_put_nbx without passing the flag UCP_OP_ATTR_FIELD_CALLBACK instead. If a request pointer is
returned, release it immediately by ucp_request_free.

Global ucp_request_is_completed (void ∗request)

Replaced by ucp_request_test.

Global ucp_request_release (void ∗request)

Replaced by ucp_request_free.

Global ucp_request_test (void ∗request, ucp_tag_recv_info_t ∗info)

Replaced by ucp_tag_recv_request_test and ucp_request_check_status depends on use case.

Global ucp_rkey_buffer_release (void ∗rkey_buffer)

Replaced by ucp_memh_buffer_release().

Global ucp_rkey_pack (ucp_context_h context, ucp_mem_h memh, void ∗∗rkey_buffer_p, size_t ∗size_p)

Replaced by ucp_memh_pack().

Global ucp_stream_recv_nb (ucp_ep_h ep, void ∗buffer, size_t count, ucp_datatype_t datatype, ucp_←↩

stream_recv_callback_t cb, size_t ∗length, unsigned flags)

Use ucp_stream_recv_nbx instead.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

https://github.com/openucx/ucx
mailto:ucx-group@elist.ornl.gov
mailto:ucx-group@elist.ornl.gov

11

Global ucp_stream_send_nb (ucp_ep_h ep, const void ∗buffer, size_t count, ucp_datatype_t datatype,
ucp_send_callback_t cb, unsigned flags)

Use ucp_stream_send_nbx instead.

Global ucp_tag_msg_recv_nb (ucp_worker_h worker, void ∗buffer, size_t count, ucp_datatype_t datatype,
ucp_tag_message_h message, ucp_tag_recv_callback_t cb)

Use ucp_tag_recv_nbx instead.

Global ucp_tag_recv_nb (ucp_worker_h worker, void ∗buffer, size_t count, ucp_datatype_t datatype, ucp←↩

_tag_t tag, ucp_tag_t tag_mask, ucp_tag_recv_callback_t cb)

Use ucp_tag_recv_nbx instead.

Global ucp_tag_recv_nbr (ucp_worker_h worker, void ∗buffer, size_t count, ucp_datatype_t datatype, ucp←↩

_tag_t tag, ucp_tag_t tag_mask, void ∗req)

Use ucp_tag_recv_nbx with the flag UCP_OP_ATTR_FIELD_REQUEST instead.

Global ucp_tag_send_nb (ucp_ep_h ep, const void ∗buffer, size_t count, ucp_datatype_t datatype, ucp_←↩

tag_t tag, ucp_send_callback_t cb)

Use ucp_tag_send_nbx instead.

Global ucp_tag_send_nbr (ucp_ep_h ep, const void ∗buffer, size_t count, ucp_datatype_t datatype, ucp_←↩

tag_t tag, void ∗req)

Use ucp_tag_send_nbx with the flag UCP_OP_ATTR_FIELD_REQUEST instead.

Global ucp_tag_send_sync_nb (ucp_ep_h ep, const void ∗buffer, size_t count, ucp_datatype_t datatype,
ucp_tag_t tag, ucp_send_callback_t cb)

Use ucp_tag_send_sync_nbx instead.

Global ucp_worker_flush (ucp_worker_h worker)

Replaced by ucp_worker_flush_nb. The following example implements the same functionality using
ucp_worker_flush_nb :

Global ucp_worker_flush_nb (ucp_worker_h worker, unsigned flags, ucp_send_callback_t cb)

Use ucp_worker_flush_nbx instead.

Global ucp_worker_get_address (ucp_worker_h worker, ucp_address_t ∗∗address_p, size_t ∗address_←↩

length_p)

Use ucp_worker_query with the flag UCP_WORKER_ATTR_FIELD_ADDRESS in order to obtain the worker
address.

Global ucp_worker_set_am_handler (ucp_worker_h worker, uint16_t id, ucp_am_callback_t cb, void ∗arg,
uint32_t flags)

Use ucp_worker_set_am_recv_handler instead.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

12 Deprecated List

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

Chapter 6

Module Documentation

6.1 Unified Communication Protocol (UCP) API

Modules

• UCP Application Context
• UCP Worker
• UCP Memory routines
• UCP Wake-up routines
• UCP Endpoint
• UCP Communication routines
• UCP Configuration
• UCP Data type routines

6.1.1 Detailed Description

This section describes UCP API.

6.1.2 UCP Application Context

Data Structures

• struct ucp_lib_attr

Lib attributes. More...

• struct ucp_context_attr

Context attributes. More...

• struct ucp_tag_recv_info

UCP receive information descriptor. More...

• struct ucp_request_param_t

Operation parameters passed to ucp_tag_send_nbx, ucp_tag_send_sync_nbx, ucp_tag_recv_nbx, ucp_put_nbx,
ucp_get_nbx, ucp_am_send_nbx and ucp_am_recv_data_nbx. More...

• union ucp_request_param_t.cb
• union ucp_request_param_t.recv_info

Macros

• #define UCP_ENTITY_NAME_MAX 32

Maximum size of the UCP entity name in structure of entity attributes provided by a query method.

14 Module Documentation

Typedefs

• typedef struct ucp_lib_attr ucp_lib_attr_t

Lib attributes.

• typedef struct ucp_context_attr ucp_context_attr_t

Context attributes.

• typedef struct ucp_tag_recv_info ucp_tag_recv_info_t

UCP receive information descriptor.

• typedef struct ucp_context ∗ ucp_context_h

UCP Application Context.

• typedef void(∗ ucp_request_init_callback_t) (void ∗request)

Request initialization callback.

• typedef void(∗ ucp_request_cleanup_callback_t) (void ∗request)

Request cleanup callback.

Enumerations

• enum ucp_params_field {
UCP_PARAM_FIELD_FEATURES = UCS_BIT(0) , UCP_PARAM_FIELD_REQUEST_SIZE = UCS_BIT(1)
, UCP_PARAM_FIELD_REQUEST_INIT = UCS_BIT(2) , UCP_PARAM_FIELD_REQUEST_CLEANUP =
UCS_BIT(3) ,
UCP_PARAM_FIELD_TAG_SENDER_MASK = UCS_BIT(4) , UCP_PARAM_FIELD_MT_WORKERS_SHARED
= UCS_BIT(5) , UCP_PARAM_FIELD_ESTIMATED_NUM_EPS = UCS_BIT(6) , UCP_PARAM_FIELD_ESTIMATED_NUM_PPN
= UCS_BIT(7) ,
UCP_PARAM_FIELD_NAME = UCS_BIT(8) }

UCP context parameters field mask.

• enum ucp_feature {
UCP_FEATURE_TAG = UCS_BIT(0) , UCP_FEATURE_RMA = UCS_BIT(1) , UCP_FEATURE_AMO32 =
UCS_BIT(2) , UCP_FEATURE_AMO64 = UCS_BIT(3) ,
UCP_FEATURE_WAKEUP = UCS_BIT(4) , UCP_FEATURE_STREAM = UCS_BIT(5) , UCP_FEATURE_AM
= UCS_BIT(6) , UCP_FEATURE_EXPORTED_MEMH = UCS_BIT(7) }

UCP configuration features.

• enum ucp_lib_attr_field { UCP_LIB_ATTR_FIELD_MAX_THREAD_LEVEL = UCS_BIT(0) }

UCP library attributes field mask.

• enum ucp_context_attr_field { UCP_ATTR_FIELD_REQUEST_SIZE = UCS_BIT(0) , UCP_ATTR_FIELD_THREAD_MODE
= UCS_BIT(1) , UCP_ATTR_FIELD_MEMORY_TYPES = UCS_BIT(2) , UCP_ATTR_FIELD_NAME = UCS←↩

_BIT(3) }

UCP context attributes field mask.

Functions

• ucs_status_t ucp_lib_query (ucp_lib_attr_t ∗attr)

Get attributes of the UCP library.

• void ucp_get_version (unsigned ∗major_version, unsigned ∗minor_version, unsigned ∗release_number)

Get UCP library version.

• const char ∗ ucp_get_version_string (void)

Get UCP library version as a string.

• static ucs_status_t ucp_init (const ucp_params_t ∗params, const ucp_config_t ∗config, ucp_context_h
∗context_p)

UCP context initialization.

• void ucp_cleanup (ucp_context_h context_p)

Release UCP application context.

• ucs_status_t ucp_context_query (ucp_context_h context_p, ucp_context_attr_t ∗attr)

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 15

Get attributes specific to a particular context.

• void ucp_context_print_info (const ucp_context_h context, FILE ∗stream)

Print context information.

6.1.2.1 Detailed Description

Application context is a primary concept of UCP design which provides an isolation mechanism, allowing resources
associated with the context to separate or share network communication context across multiple instances of appli-
cations.

This section provides a detailed description of this concept and routines associated with it.

6.1.2.2 Data Structure Documentation

6.1.2.2.1 struct ucp_lib_attr

The structure defines the attributes that characterize the Library.

Data Fields

uint64_t field_mask Mask of valid fields in this structure, using bits from
ucp_lib_attr_field. Fields not specified in this mask will be ignored.
Provides ABI compatibility with respect to adding new fields.

ucs_thread_mode_t max_thread_level Maximum level of thread support of the library, which is permanent
throughout the lifetime of the library. Accordingly, the user can call
ucp_worker_create with appropriate
ucp_worker_params_t::thread_mode. For supported thread levels
please see ucs_thread_mode_t.

6.1.2.2.2 struct ucp_context_attr

The structure defines the attributes that characterize the particular context.

Data Fields

uint64_t field_mask Mask of valid fields in this structure, using bits
from ucp_context_attr_field. Fields not specified
in this mask will be ignored. Provides ABI
compatibility with respect to adding new fields.

size_t request_size Size of UCP non-blocking request. When
pre-allocated request is used (e.g. in
ucp_tag_recv_nbr) it should have enough space
to fit UCP request data, which is defined by this
value.

ucs_thread_mode_t thread_mode Thread safe level of the context. For supported
thread levels please see ucs_thread_mode_t.

uint64_t memory_types Mask of which memory types are supported, for
supported memory types please see
ucs_memory_type_t.

char name[UCP_ENTITY_NAME_MAX] Tracing and analysis tools can use name to
identify this UCX context.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

16 Module Documentation

6.1.2.2.3 struct ucp_tag_recv_info

The UCP receive information descriptor is allocated by application and filled in with the information about the re-
ceived message by ucp_tag_probe_nb or ucp_tag_recv_request_test routines or ucp_tag_recv_callback_t callback
argument.

Examples

ucp_client_server.c, and ucp_hello_world.c.

Data Fields

ucp_tag_t sender_tag Sender tag

size_t length The size of the received data

6.1.2.2.4 struct ucp_request_param_t

The structure ucp_request_param_t is used to specify datatype of operation, provide user request in case the
external request is used, set completion callback and custom user data passed to this callback.

Example: implementation of function to send contiguous buffer to ep and invoke callback function at operation
completion. If the operation completed immediately (status == UCS_OK) then callback is not called.
ucs_status_ptr_t send_data(ucp_ep_h ep, void *buffer, size_t length,

ucp_tag_t tag, void *request)
{

ucp_request_param_t param = {
.op_attr_mask = UCP_OP_ATTR_FIELD_CALLBACK |

UCP_OP_ATTR_FIELD_REQUEST,
.request = request,
.cb.send = custom_send_callback_f,
.user_data = pointer_to_user_context_passed_to_cb

};

ucs_status_ptr_t status;

status = ucp_tag_send_nbx(ep, buffer, length, tag, ¶m);
if (UCS_PTR_IS_ERR(status)) {

handle_error(status);
} else if (status == UCS_OK) {

// operation is completed
}

return status;
}

Examples

ucp_client_server.c, and ucp_hello_world.c.

Data Fields

uint32_t op_attr_mask Mask of valid fields in this structure and operation
flags, using bits from ucp_op_attr_t. Fields not
specified in this mask will be ignored. Provides ABI
compatibility with respect to adding new fields.

uint32_t flags

void ∗ request Request handle allocated by the user. There should
be at least UCP request size bytes of available
space before the request. The size of the UCP
request can be obtained by ucp_context_query
function.

union ucp_request_param_t.cb cb Callback function that is invoked whenever the send
or receive operation is completed.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 17

Data Fields

ucp_datatype_t datatype Datatype descriptor for the elements in the buffer. In
case the op_attr_mask &
UCP_OP_ATTR_FIELD_DATATYPE bit is not set,
then use default datatype ucp_dt_make_contig(1)

void ∗ user_data Pointer to user data passed to callback function.

void ∗ reply_buffer Reply buffer. Can be used for storing operation
result, for example by ucp_atomic_op_nbx.

ucs_memory_type_t memory_type Memory type of the buffer. see ucs_memory_type_t
for possible memory types. An optimization hint to
avoid memory type detection for request buffer. If
this value is not set (along with its corresponding bit
in the op_attr_mask -
UCP_OP_ATTR_FIELD_MEMORY_TYPE), then
use default UCS_MEMORY_TYPE_UNKNOWN
which means the memory type will be detected
internally.

union ucp_request_param_t.recv_info recv_info Pointer to the information where received data
details are stored in case of an immediate
completion of receive operation. The user has to
provide a pointer to valid memory/variable which will
be updated on function return.

ucp_mem_h memh Memory handle for pre-registered buffer. If the
handle is provided, protocols that require registered
memory can skip the registration step. As a result,
the communication request overhead can be
reduced and the request can be completed faster.
The memory handle should be obtained by calling
ucp_mem_map.

6.1.2.2.5 union ucp_request_param_t.cb

Callback function that is invoked whenever the send or receive operation is completed.

Data Fields

ucp_send_nbx_callback_t send

ucp_tag_recv_nbx_callback_t recv

ucp_stream_recv_nbx_callback_t recv_stream

ucp_am_recv_data_nbx_callback_t recv_am

6.1.2.2.6 union ucp_request_param_t.recv_info

Pointer to the information where received data details are stored in case of an immediate completion of receive
operation. The user has to provide a pointer to valid memory/variable which will be updated on function return.

Data Fields

size_t ∗ length

ucp_tag_recv_info_t ∗ tag_info

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

18 Module Documentation

6.1.2.3 Macro Definition Documentation

6.1.2.3.1 UCP_ENTITY_NAME_MAX

#define UCP_ENTITY_NAME_MAX 32

6.1.2.4 Typedef Documentation

6.1.2.4.1 ucp_lib_attr_t

typedef struct ucp_lib_attr ucp_lib_attr_t

The structure defines the attributes that characterize the Library.

6.1.2.4.2 ucp_context_attr_t

typedef struct ucp_context_attr ucp_context_attr_t

The structure defines the attributes that characterize the particular context.

6.1.2.4.3 ucp_tag_recv_info_t

typedef struct ucp_tag_recv_info ucp_tag_recv_info_t

The UCP receive information descriptor is allocated by application and filled in with the information about the re-
ceived message by ucp_tag_probe_nb or ucp_tag_recv_request_test routines or ucp_tag_recv_callback_t callback
argument.

6.1.2.4.4 ucp_context_h

typedef struct ucp_context∗ ucp_context_h

UCP application context (or just a context) is an opaque handle that holds a UCP communication instance's global
information. It represents a single UCP communication instance. The communication instance could be an OS
process (an application) that uses UCP library. This global information includes communication resources, end-
points, memory, temporary file storage, and other communication information directly associated with a specific
UCP instance. The context also acts as an isolation mechanism, allowing resources associated with the context to
manage multiple concurrent communication instances. For example, users using both MPI and OpenSHMEM ses-
sions simultaneously can isolate their communication by allocating and using separate contexts for each of them.
Alternatively, users can share the communication resources (memory, network resource context, etc.) between
them by using the same application context. A message sent or a RMA operation performed in one application
context cannot be received in any other application context.

6.1.2.4.5 ucp_request_init_callback_t

typedef void(∗ ucp_request_init_callback_t) (void ∗request)

This callback routine is responsible for the request initialization.

Parameters

in request Request handle to initialize.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 19

6.1.2.4.6 ucp_request_cleanup_callback_t

typedef void(∗ ucp_request_cleanup_callback_t) (void ∗request)

This callback routine is responsible for cleanup of the memory associated with the request.

Parameters

in request Request handle to cleanup.

6.1.2.5 Enumeration Type Documentation

6.1.2.5.1 ucp_params_field

enum ucp_params_field

The enumeration allows specifying which fields in ucp_params_t are present. It is used to enable backward com-
patibility support.

Enumerator

UCP_PARAM_FIELD_FEATURES features
UCP_PARAM_FIELD_REQUEST_SIZE request_size

UCP_PARAM_FIELD_REQUEST_INIT request_init

UCP_PARAM_FIELD_REQUEST_CLEANUP request_cleanup

UCP_PARAM_FIELD_TAG_SENDER_MASK tag_sender_mask

UCP_PARAM_FIELD_MT_WORKERS_SHARED mt_workers_shared
UCP_PARAM_FIELD_ESTIMATED_NUM_EPS estimated_num_eps

UCP_PARAM_FIELD_ESTIMATED_NUM_PPN estimated_num_ppn

UCP_PARAM_FIELD_NAME name

6.1.2.5.2 ucp_feature

enum ucp_feature

The enumeration list describes the features supported by UCP. An application can request the features using
UCP parameters during UCP initialization process.

Enumerator

UCP_FEATURE_TAG Request tag matching support

UCP_FEATURE_RMA Request remote memory access support

UCP_FEATURE_AMO32 Request 32-bit atomic operations support

UCP_FEATURE_AMO64 Request 64-bit atomic operations support

UCP_FEATURE_WAKEUP Request interrupt notification support

UCP_FEATURE_STREAM Request stream support

UCP_FEATURE_AM Request Active Message support

UCP_FEATURE_EXPORTED_MEMH Request support mapping a peer's memory handle that was created
by ucp_mem_map and packed by ucp_memh_pack with the flag
UCP_MEMH_PACK_FLAG_EXPORT and use it for local operations

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

20 Module Documentation

6.1.2.5.3 ucp_lib_attr_field

enum ucp_lib_attr_field

The enumeration allows specifying which fields in ucp_lib_attr_t are present. It is used to enable backward compat-
ibility support.

Enumerator

UCP_LIB_ATTR_FIELD_MAX_THREAD_LEVEL UCP library maximum supported thread level flag

6.1.2.5.4 ucp_context_attr_field

enum ucp_context_attr_field

The enumeration allows specifying which fields in ucp_context_attr_t are present. It is used to enable backward
compatibility support.

Enumerator

UCP_ATTR_FIELD_REQUEST_SIZE UCP request size

UCP_ATTR_FIELD_THREAD_MODE UCP context thread flag

UCP_ATTR_FIELD_MEMORY_TYPES UCP supported memory types

UCP_ATTR_FIELD_NAME UCP context name

6.1.2.6 Function Documentation

6.1.2.6.1 ucp_lib_query()

ucs_status_t ucp_lib_query (

ucp_lib_attr_t ∗ attr)

This routine fetches information about the UCP library attributes.

Parameters

out attr Filled with attributes of the UCP library.

Returns

Error code as defined by ucs_status_t

6.1.2.6.2 ucp_get_version()

void ucp_get_version (

unsigned ∗ major_version,

unsigned ∗ minor_version,

unsigned ∗ release_number)

This routine returns the UCP library version.

Parameters

out major_version Filled with library major version.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 21

Parameters

out minor_version Filled with library minor version.

out release_number Filled with library release number.

6.1.2.6.3 ucp_get_version_string()

const char ∗ ucp_get_version_string (

void)

This routine returns the UCP library version as a string which consists of: ¨major.minor.release¨.

6.1.2.6.4 ucp_init()

static ucs_status_t ucp_init (

const ucp_params_t ∗ params,

const ucp_config_t ∗ config,

ucp_context_h ∗ context_p) [inline], [static]

This routine creates and initializes a UCP application context.

Warning

This routine must be called before any other UCP function call in the application.

This routine checks API version compatibility, then discovers the available network interfaces, and initializes the
network resources required for discovering of the network and memory related devices. This routine is responsible
for initialization all information required for a particular application scope, for example, MPI application, Open←↩

SHMEM application, etc.

Note

• Higher level protocols can add additional communication isolation, as MPI does with its communicator
object. A single communication context may be used to support multiple MPI communicators.

• The context can be used to isolate the communication that corresponds to different protocols. For exam-
ple, if MPI and OpenSHMEM are using UCP to isolate the MPI communication from the OpenSHMEM
communication, users should use different application context for each of the communication libraries.

Parameters

in config UCP configuration descriptor allocated through ucp_config_read() routine.

in params User defined ucp_params_t configurations for the UCP application context.

out context←↩

_p
Initialized UCP application context.

Returns

Error code as defined by ucs_status_t

Examples

ucp_client_server.c, and ucp_hello_world.c.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

22 Module Documentation

6.1.2.6.5 ucp_cleanup()

void ucp_cleanup (

ucp_context_h context_p)

This routine finalizes and releases the resources associated with a UCP application context.

Warning

An application cannot call any UCP routine once the UCP application context released.

The cleanup process releases and shuts down all resources associated with the application context. After calling
this routine, calling any UCP routine without calling UCP initialization routine is invalid.

Parameters

in context←↩

_p
Handle to UCP application context.

Examples

ucp_client_server.c, and ucp_hello_world.c.

6.1.2.6.6 ucp_context_query()

ucs_status_t ucp_context_query (

ucp_context_h context_p,

ucp_context_attr_t ∗ attr)

This routine fetches information about the context.

Parameters

in context←↩

_p
Handle to UCP application context.

out attr Filled with attributes of context_p context.

Returns

Error code as defined by ucs_status_t

6.1.2.6.7 ucp_context_print_info()

void ucp_context_print_info (

const ucp_context_h context,

FILE ∗ stream)

This routine prints information about the context configuration: including memory domains, transport resources, and
other useful information associated with the context.

Parameters

in context Print this context object's configuration.

in stream Output stream on which to print the information.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 23

6.1.3 UCP Worker

Data Structures

• struct ucp_worker_attr

UCP worker attributes. More...

• struct ucp_worker_params

Tuning parameters for the UCP worker. More...

• struct ucp_worker_address_attr

UCP worker address attributes. More...

• struct ucp_listener_attr

UCP listener attributes. More...

• struct ucp_conn_request_attr

UCP listener's connection request attributes. More...

• struct ucp_listener_params

Parameters for a UCP listener object. More...

• struct ucp_am_handler_param

Active Message handler parameters passed to ucp_worker_set_am_recv_handler routine. More...

• struct ucp_am_recv_param

Operation parameters provided in ucp_am_recv_callback_t callback. More...

• struct ucp_listener_accept_handler
• struct ucp_listener_conn_handler

UCP callback to handle the connection request in a client-server connection establishment flow. More...

Typedefs

• typedef struct ucp_worker_attr ucp_worker_attr_t

UCP worker attributes.

• typedef struct ucp_worker_params ucp_worker_params_t

Tuning parameters for the UCP worker.

• typedef struct ucp_worker_address_attr ucp_worker_address_attr_t

UCP worker address attributes.

• typedef struct ucp_listener_attr ucp_listener_attr_t

UCP listener attributes.

• typedef struct ucp_conn_request_attr ucp_conn_request_attr_t

UCP listener's connection request attributes.

• typedef struct ucp_listener_params ucp_listener_params_t

Parameters for a UCP listener object.

• typedef struct ucp_am_handler_param ucp_am_handler_param_t

Active Message handler parameters passed to ucp_worker_set_am_recv_handler routine.

• typedef struct ucp_listener_accept_handler ucp_listener_accept_handler_t
• typedef struct ucp_am_recv_param ucp_am_recv_param_t

Operation parameters provided in ucp_am_recv_callback_t callback.

• typedef struct ucp_address ucp_address_t

UCP worker address.

• typedef struct ucp_listener ∗ ucp_listener_h

UCP listen handle.

• typedef struct ucp_worker ∗ ucp_worker_h

UCP Worker.

• typedef void(∗ ucp_listener_accept_callback_t) (ucp_ep_h ep, void ∗arg)

A callback for accepting client/server connections on a listener ucp_listener_h.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

24 Module Documentation

• typedef void(∗ ucp_listener_conn_callback_t) (ucp_conn_request_h conn_request, void ∗arg)

A callback for handling of incoming connection request conn_request from a client.

• typedef struct ucp_listener_conn_handler ucp_listener_conn_handler_t

UCP callback to handle the connection request in a client-server connection establishment flow.

• typedef enum ucp_wakeup_event_types ucp_wakeup_event_t

UCP worker wakeup events mask.

Enumerations

• enum ucp_worker_params_field {
UCP_WORKER_PARAM_FIELD_THREAD_MODE = UCS_BIT(0) , UCP_WORKER_PARAM_FIELD_CPU_MASK
= UCS_BIT(1) , UCP_WORKER_PARAM_FIELD_EVENTS = UCS_BIT(2) , UCP_WORKER_PARAM_FIELD_USER_DATA
= UCS_BIT(3) ,
UCP_WORKER_PARAM_FIELD_EVENT_FD = UCS_BIT(4) , UCP_WORKER_PARAM_FIELD_FLAGS =
UCS_BIT(5) , UCP_WORKER_PARAM_FIELD_NAME = UCS_BIT(6) , UCP_WORKER_PARAM_FIELD_AM_ALIGNMENT
= UCS_BIT(7) ,
UCP_WORKER_PARAM_FIELD_CLIENT_ID = UCS_BIT(8) }

UCP worker parameters field mask.

• enum ucp_worker_flags_t { UCP_WORKER_FLAG_IGNORE_REQUEST_LEAK = UCS_BIT(0) }

UCP worker flags.

• enum ucp_listener_params_field { UCP_LISTENER_PARAM_FIELD_SOCK_ADDR = UCS_BIT(0) ,
UCP_LISTENER_PARAM_FIELD_ACCEPT_HANDLER = UCS_BIT(1) , UCP_LISTENER_PARAM_FIELD_CONN_HANDLER
= UCS_BIT(2) }

UCP listener parameters field mask.

• enum ucp_worker_address_flags_t { UCP_WORKER_ADDRESS_FLAG_NET_ONLY = UCS_BIT(0) }

UCP worker address flags.

• enum ucp_worker_attr_field {
UCP_WORKER_ATTR_FIELD_THREAD_MODE = UCS_BIT(0) , UCP_WORKER_ATTR_FIELD_ADDRESS
= UCS_BIT(1) , UCP_WORKER_ATTR_FIELD_ADDRESS_FLAGS = UCS_BIT(2) , UCP_WORKER_ATTR_FIELD_MAX_AM_HEADER
= UCS_BIT(3) ,
UCP_WORKER_ATTR_FIELD_NAME = UCS_BIT(4) , UCP_WORKER_ATTR_FIELD_MAX_INFO_STRING
= UCS_BIT(5) }

UCP worker attributes field mask.

• enum ucp_worker_address_attr_field { UCP_WORKER_ADDRESS_ATTR_FIELD_UID = UCS_BIT(0) }

UCP worker address attributes field mask.

• enum ucp_listener_attr_field { UCP_LISTENER_ATTR_FIELD_SOCKADDR = UCS_BIT(0) }

UCP listener attributes field mask.

• enum ucp_conn_request_attr_field { UCP_CONN_REQUEST_ATTR_FIELD_CLIENT_ADDR = UCS_BIT(0)
, UCP_CONN_REQUEST_ATTR_FIELD_CLIENT_ID = UCS_BIT(1) }

UCP listener's connection request attributes field mask.

• enum ucp_am_cb_flags { UCP_AM_FLAG_WHOLE_MSG = UCS_BIT(0) , UCP_AM_FLAG_PERSISTENT_DATA
= UCS_BIT(1) }

Flags for a UCP Active Message callback.

• enum ucp_send_am_flags {
UCP_AM_SEND_FLAG_REPLY = UCS_BIT(0) , UCP_AM_SEND_FLAG_EAGER = UCS_BIT(1) ,
UCP_AM_SEND_FLAG_RNDV = UCS_BIT(2) , UCP_AM_SEND_FLAG_COPY_HEADER = UCS_BIT(3) ,
UCP_AM_SEND_REPLY = UCP_AM_SEND_FLAG_REPLY }

Flags for sending a UCP Active Message.

• enum ucp_wakeup_event_types {
UCP_WAKEUP_RMA = UCS_BIT(0) , UCP_WAKEUP_AMO = UCS_BIT(1) , UCP_WAKEUP_TAG_SEND =
UCS_BIT(2) , UCP_WAKEUP_TAG_RECV = UCS_BIT(3) ,
UCP_WAKEUP_TX = UCS_BIT(10) , UCP_WAKEUP_RX = UCS_BIT(11) , UCP_WAKEUP_EDGE = UCS←↩

_BIT(16) }

UCP worker wakeup events mask.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 25

Functions

• ucs_status_t ucp_worker_create (ucp_context_h context, const ucp_worker_params_t ∗params, ucp_worker_h
∗worker_p)

Create a worker object.

• void ucp_worker_destroy (ucp_worker_h worker)

Destroy a worker object.

• ucs_status_t ucp_worker_query (ucp_worker_h worker, ucp_worker_attr_t ∗attr)

Get attributes specific to a particular worker.

• void ucp_worker_print_info (ucp_worker_h worker, FILE ∗stream)

Print information about the worker.

• void ucp_worker_release_address (ucp_worker_h worker, ucp_address_t ∗address)

Release an address of the worker object.

• ucs_status_t ucp_worker_address_query (ucp_address_t ∗address, ucp_worker_address_attr_t ∗attr)

Get attributes of the particular worker address.

• unsigned ucp_worker_progress (ucp_worker_h worker)

Progress all communications on a specific worker.

• ssize_t ucp_stream_worker_poll (ucp_worker_h worker, ucp_stream_poll_ep_t ∗poll_eps, size_t max_eps,
unsigned flags)

Poll for endpoints that are ready to consume streaming data.

• ucs_status_t ucp_listener_create (ucp_worker_h worker, const ucp_listener_params_t ∗params, ucp_listener_h
∗listener_p)

Create a listener to accept connections on. Connection requests on the listener will arrive at a local address specified
by the user.

• void ucp_listener_destroy (ucp_listener_h listener)

Stop accepting connections on a local address of the worker object.

• ucs_status_t ucp_listener_query (ucp_listener_h listener, ucp_listener_attr_t ∗attr)

Get attributes specific to a particular listener.

• ucs_status_t ucp_conn_request_query (ucp_conn_request_h conn_request, ucp_conn_request_attr_t ∗attr)

Get attributes specific to a particular connection request received on the server side.

• ucs_status_t ucp_listener_reject (ucp_listener_h listener, ucp_conn_request_h conn_request)

Reject an incoming connection request.

• ucs_status_t ucp_worker_set_am_recv_handler (ucp_worker_h worker, const ucp_am_handler_param_t
∗param)

Add user defined callback for Active Message.

• ucs_status_t ucp_worker_fence (ucp_worker_h worker)

Assures ordering between non-blocking operations.

• ucs_status_ptr_t ucp_worker_flush_nbx (ucp_worker_h worker, const ucp_request_param_t ∗param)

Flush outstanding AMO and RMA operations on the worker.

• ucs_status_t ucp_worker_flush (ucp_worker_h worker)

Flush outstanding AMO and RMA operations on the worker.

• ucs_status_t ucp_worker_get_address (ucp_worker_h worker, ucp_address_t ∗∗address_p, size_←↩

t ∗address_length_p)

Get the address of the worker object.

• ucs_status_t ucp_worker_set_am_handler (ucp_worker_h worker, uint16_t id, ucp_am_callback_t cb, void
∗arg, uint32_t flags)

Add user defined callback for Active Message.

• ucs_status_ptr_t ucp_worker_flush_nb (ucp_worker_h worker, unsigned flags, ucp_send_callback_t cb)

Flush outstanding AMO and RMA operations on the worker.

6.1.3.1 Detailed Description

UCP Worker routines

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

26 Module Documentation

6.1.3.2 Data Structure Documentation

6.1.3.2.1 struct ucp_worker_attr

The structure defines the attributes which characterize the particular worker.

Examples

ucp_hello_world.c.

Data Fields

uint64_t field_mask Mask of valid fields in this structure, using bits
from ucp_worker_attr_field. Fields not specified
in this mask will be ignored. Provides ABI
compatibility with respect to adding new fields.

ucs_thread_mode_t thread_mode Thread safe level of the worker.
uint32_t address_flags Flags indicating requested details of the worker

address. If
UCP_WORKER_ATTR_FIELD_ADDRESS_FLAGS
bit is set in the field_mask, this value should be
set as well. Possible flags are specified in
ucp_worker_address_flags_t.

Note

This is an input attribute.

ucp_address_t ∗ address Worker address, which can be passed to remote
instances of the UCP library in order to connect
to this worker. The memory for the address
handle is allocated by ucp_worker_query()
routine, and must be released by using
ucp_worker_release_address() routine.

size_t address_length Size of worker address in bytes.

size_t max_am_header Maximum allowed header size for
ucp_am_send_nbx routine.

char name[UCP_ENTITY_NAME_MAX] Tracing and analysis tools can identify the worker
using this name.

size_t max_debug_string Maximum debug string size that can be filled with
ucp_request_query.

6.1.3.2.2 struct ucp_worker_params

The structure defines the parameters that are used for the UCP worker tuning during the UCP worker creation.

Examples

ucp_client_server.c, and ucp_hello_world.c.

Data Fields

uint64_t field_mask Mask of valid fields in this structure, using bits from
ucp_worker_params_field. Fields not specified in this mask will be
ignored. Provides ABI compatibility with respect to adding new fields.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 27

Data Fields

ucs_thread_mode_t thread_mode The parameter thread_mode suggests the thread safety mode which
worker and the associated resources should be created with. This is
an optional parameter. The default value is
UCS_THREAD_MODE_SINGLE and it is used when the value of the
parameter is not set. When this parameter along with its
corresponding bit in the field_mask -
UCP_WORKER_PARAM_FIELD_THREAD_MODE is set, the
ucp_worker_create attempts to create worker with this thread mode.
The thread mode with which worker is created can differ from the
suggested mode. The actual thread mode of the worker should be
obtained using the query interface ucp_worker_query.

ucs_cpu_set_t cpu_mask Mask of which CPUs worker resources should preferably be allocated
on. This value is optional. If it's not set (along with its corresponding
bit in the field_mask - UCP_WORKER_PARAM_FIELD_CPU_MASK),
resources are allocated according to system's default policy.

unsigned events Mask of events (ucp_wakeup_event_t) which are expected on wakeup.
This value is optional. If it's not set (along with its corresponding bit in
the field_mask - UCP_WORKER_PARAM_FIELD_EVENTS), all types
of events will trigger on wakeup.

void ∗ user_data User data associated with the current worker. This value is optional. If
it's not set (along with its corresponding bit in the field_mask -
UCP_WORKER_PARAM_FIELD_USER_DATA), it will default to
NULL.

int event_fd External event file descriptor. This value is optional. If
UCP_WORKER_PARAM_FIELD_EVENT_FD is set in the field_mask,
events on the worker will be reported on the provided event file
descriptor. In this case, calling ucp_worker_get_efd will result in an
error. The provided file descriptor must be capable of aggregating
notifications for arbitrary events, for example epoll(7) on Linux
systems. user_data will be used as the event user-data on systems
which support it. For example, on Linux, it will be placed in
epoll_data_t::ptr, when returned from epoll_wait(2).
Otherwise, events will be reported to the event file descriptor returned
from ucp_worker_get_efd().

uint64_t flags Worker flags. This value is optional. If
UCP_WORKER_PARAM_FIELD_FLAGS is not set in the field_mask,
the value of this field will default to 0.

const char ∗ name Tracing and analysis tools can identify the worker using this name. To
retrieve the worker's name, use ucp_worker_query, as the name you
supply may be changed by UCX under some circumstances, e.g. a
name conflict. This field is only assigned if you set
UCP_WORKER_PARAM_FIELD_NAME in the field mask. If not, then
a default unique name will be created for you.

size_t am_alignment Minimal address alignment of the active message data pointer as
passed in argument data to the active message handler, defined as
ucp_am_recv_callback_t.

uint64_t client_id Client id that is sent as part of the connection request payload when
connecting to a remote socket address. On the remote side, this value
can be obtained from ucp_conn_request_h using
ucp_conn_request_query.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

28 Module Documentation

6.1.3.2.3 struct ucp_worker_address_attr

The structure defines the attributes of the particular worker address.

Data Fields

uint64_t field_mask Mask of valid fields in this structure, using bits from ucp_worker_address_attr_field.
Fields not specified in this mask will be ignored. Provides ABI compatibility with
respect to adding new fields.

uint64_t worker_uid Unique id of the worker this address belongs to.

6.1.3.2.4 struct ucp_listener_attr

The structure defines the attributes which characterize the particular listener.

Examples

ucp_client_server.c.

Data Fields

uint64_t field_mask Mask of valid fields in this structure, using bits from
ucp_listener_attr_field. Fields not specified in this mask will be
ignored. Provides ABI compatibility with respect to adding new fields.

struct sockaddr_storage sockaddr Sockaddr on which this listener is listening for incoming connection
requests.

6.1.3.2.5 struct ucp_conn_request_attr

The structure defines the attributes that characterize the particular connection request received on the server side.

Examples

ucp_client_server.c.

Data Fields

uint64_t field_mask Mask of valid fields in this structure, using bits from
ucp_conn_request_attr_field. Fields not specified in this mask will
be ignored. Provides ABI compatibility with respect to adding new
fields.

struct sockaddr_storage client_address The address of the remote client that sent the connection request
to the server.

uint64_t client_id Remote client id if remote endpoint's flag
UCP_EP_PARAMS_FLAGS_SEND_CLIENT_ID is set.

6.1.3.2.6 struct ucp_listener_params

This structure defines parameters for ucp_listener_create, which is used to listen for incoming client/server connec-
tions.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 29

Examples

ucp_client_server.c.

Data Fields

uint64_t field_mask Mask of valid fields in this structure, using bits from
ucp_listener_params_field. Fields not specified in this
mask will be ignored. Provides ABI compatibility with
respect to adding new fields.

ucs_sock_addr_t sockaddr An address in the form of a sockaddr. This field is
mandatory for filling (along with its corresponding bit in
the field_mask -
UCP_LISTENER_PARAM_FIELD_SOCK_ADDR). The
ucp_listener_create routine will return with an error if
sockaddr is not specified.

ucp_listener_accept_handler_t accept_handler Handler to endpoint creation in a client-server connection
flow. In order for the callback inside this handler to be
invoked, the
UCP_LISTENER_PARAM_FIELD_ACCEPT_HANDLER
needs to be set in the field_mask.

ucp_listener_conn_handler_t conn_handler Handler of an incoming connection request in a
client-server connection flow. In order for the callback
inside this handler to be invoked, the
UCP_LISTENER_PARAM_FIELD_CONN_HANDLER
needs to be set in the field_mask.

Note

User is expected to call ucp_ep_create with set
UCP_EP_PARAM_FIELD_CONN_REQUEST flag
to ucp_ep_params_t::field_mask and
ucp_ep_params_t::conn_request in order to be able
to receive communications.

6.1.3.2.7 struct ucp_am_handler_param

Examples

ucp_client_server.c.

Data Fields

uint64_t field_mask Mask of valid fields in this structure, using bits from
ucp_am_handler_param_field. Fields not specified in this mask will
be ignored. Provides ABI compatibility with respect to adding new
fields.

unsigned id Active Message id.

Warning

Value must be between 0 and UINT16_MAX.

uint32_t flags Handler flags as defined by ucp_am_cb_flags.

ucp_am_recv_callback_t cb Active Message callback. To clear the already set callback, this
value should be set to NULL.

void ∗ arg Active Message argument, which will be passed in to every
invocation of ucp_am_recv_callback_t function as the arg argument.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

30 Module Documentation

6.1.3.2.8 struct ucp_am_recv_param

Examples

ucp_client_server.c.

Data Fields

uint64_t recv_attr Mask of valid fields in this structure and receive operation flags, using bits from
ucp_am_recv_attr_t. Fields not specified in this mask will be ignored. Provides ABI
compatibility with respect to adding new fields.

ucp_ep_h reply_ep Endpoint, which can be used for the reply to this message.

6.1.3.2.9 struct ucp_listener_accept_handler

Deprecated Replaced by ucp_listener_conn_handler_t.

Data Fields

ucp_listener_accept_callback_t cb Endpoint creation callback

void ∗ arg User defined argument for the callback

6.1.3.2.10 struct ucp_listener_conn_handler

This structure is used for handling an incoming connection request on the listener. Setting this type of handler
allows creating an endpoint on any other worker and not limited to the worker on which the listener was created.

Note

• Other than communication progress routines, it is allowed to call all other communication routines from
the callback in the struct.

• The callback is thread safe with respect to the worker it is invoked on.

• It is the user's responsibility to avoid potential dead lock accessing different worker.

Data Fields

ucp_listener_conn_callback_t cb Connection request callback

void ∗ arg User defined argument for the callback

6.1.3.3 Typedef Documentation

6.1.3.3.1 ucp_worker_attr_t

typedef struct ucp_worker_attr ucp_worker_attr_t

The structure defines the attributes which characterize the particular worker.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 31

6.1.3.3.2 ucp_worker_params_t

typedef struct ucp_worker_params ucp_worker_params_t

The structure defines the parameters that are used for the UCP worker tuning during the UCP worker creation.

6.1.3.3.3 ucp_worker_address_attr_t

typedef struct ucp_worker_address_attr ucp_worker_address_attr_t

The structure defines the attributes of the particular worker address.

6.1.3.3.4 ucp_listener_attr_t

typedef struct ucp_listener_attr ucp_listener_attr_t

The structure defines the attributes which characterize the particular listener.

6.1.3.3.5 ucp_conn_request_attr_t

typedef struct ucp_conn_request_attr ucp_conn_request_attr_t

The structure defines the attributes that characterize the particular connection request received on the server side.

6.1.3.3.6 ucp_listener_params_t

typedef struct ucp_listener_params ucp_listener_params_t

This structure defines parameters for ucp_listener_create, which is used to listen for incoming client/server connec-
tions.

6.1.3.3.7 ucp_am_handler_param_t

typedef struct ucp_am_handler_param ucp_am_handler_param_t

6.1.3.3.8 ucp_listener_accept_handler_t

typedef struct ucp_listener_accept_handler ucp_listener_accept_handler_t

Deprecated Replaced by ucp_listener_conn_handler_t.

6.1.3.3.9 ucp_am_recv_param_t

typedef struct ucp_am_recv_param ucp_am_recv_param_t

6.1.3.3.10 ucp_address_t

typedef struct ucp_address ucp_address_t

The address handle is an opaque object that is used as an identifier for a worker instance.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

32 Module Documentation

6.1.3.3.11 ucp_listener_h

typedef struct ucp_listener∗ ucp_listener_h

The listener handle is an opaque object that is used for listening on a specific address and accepting connections
from clients.

6.1.3.3.12 ucp_worker_h

typedef struct ucp_worker∗ ucp_worker_h

UCP worker is an opaque object representing the communication context. The worker represents an instance of a
local communication resource and the progress engine associated with it. The progress engine is a construct that is
responsible for asynchronous and independent progress of communication directives. The progress engine could be
implemented in hardware or software. The worker object abstracts an instance of network resources such as a host
channel adapter port, network interface, or multiple resources such as multiple network interfaces or communication
ports. It could also represent virtual communication resources that are defined across multiple devices. Although
the worker can represent multiple network resources, it is associated with a single UCX application context. All
communication functions require a context to perform the operation on the dedicated hardware resource(s) and an
endpoint to address the destination.

Note

Worker are parallel ¨threading points¨ that an upper layer may use to optimize concurrent communications.

6.1.3.3.13 ucp_listener_accept_callback_t

typedef void(∗ ucp_listener_accept_callback_t) (ucp_ep_h ep, void ∗arg)

This callback routine is invoked on the server side upon creating a connection to a remote client. The user can
pass an argument to this callback. The user is responsible for releasing the ep handle using the ucp_ep_destroy()
routine.

Parameters

in ep Handle to a newly created endpoint which is connected to the remote peer which has initiated the
connection.

in arg User's argument for the callback.

6.1.3.3.14 ucp_listener_conn_callback_t

typedef void(∗ ucp_listener_conn_callback_t) (ucp_conn_request_h conn_request, void ∗arg)

This callback routine is invoked on the server side to handle incoming connections from remote clients. The user
can pass an argument to this callback. The conn_request handle has to be released, either by ucp_ep_create or
ucp_listener_reject routine.

Parameters

in conn_request Connection request handle.

in arg User's argument for the callback.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 33

6.1.3.3.15 ucp_listener_conn_handler_t

typedef struct ucp_listener_conn_handler ucp_listener_conn_handler_t

This structure is used for handling an incoming connection request on the listener. Setting this type of handler
allows creating an endpoint on any other worker and not limited to the worker on which the listener was created.

Note

• Other than communication progress routines, it is allowed to call all other communication routines from
the callback in the struct.

• The callback is thread safe with respect to the worker it is invoked on.

• It is the user's responsibility to avoid potential dead lock accessing different worker.

6.1.3.3.16 ucp_wakeup_event_t

typedef enum ucp_wakeup_event_types ucp_wakeup_event_t

The enumeration allows specifying which events are expected on wakeup. Empty events are possible for any type
of event except for UCP_WAKEUP_TX and UCP_WAKEUP_RX.

Note

Send completions are reported by POLLIN-like events (see poll man page). Since outgoing operations can be
initiated at any time, UCP does not generate POLLOUT-like events, although it must be noted that outgoing
operations may be queued depending upon resource availability.

6.1.3.4 Enumeration Type Documentation

6.1.3.4.1 ucp_worker_params_field

enum ucp_worker_params_field

The enumeration allows specifying which fields in ucp_worker_params_t are present. It is used to enable backward
compatibility support.

Enumerator

UCP_WORKER_PARAM_FIELD_THREAD_MODE UCP thread mode
UCP_WORKER_PARAM_FIELD_CPU_MASK Worker's CPU bitmap

UCP_WORKER_PARAM_FIELD_EVENTS Worker's events bitmap

UCP_WORKER_PARAM_FIELD_USER_DATA User data
UCP_WORKER_PARAM_FIELD_EVENT_FD External event file descriptor

UCP_WORKER_PARAM_FIELD_FLAGS Worker flags

UCP_WORKER_PARAM_FIELD_NAME Worker name
UCP_WORKER_PARAM_FIELD_AM_ALIGNMENT Alignment of active messages on the receiver

UCP_WORKER_PARAM_FIELD_CLIENT_ID Client id

6.1.3.4.2 ucp_worker_flags_t

enum ucp_worker_flags_t

This enumeration allows specifying flags for ucp_worker_params_t::flags, which is used as parameter for
ucp_worker_create.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

34 Module Documentation

Enumerator

UCP_WORKER_FLAG_IGNORE_REQUEST_LEAK Do not print warnings about request leaks

6.1.3.4.3 ucp_listener_params_field

enum ucp_listener_params_field

The enumeration allows specifying which fields in ucp_listener_params_t are present. It is used to enable backward
compatibility support.

Enumerator

UCP_LISTENER_PARAM_FIELD_SOCK_ADDR Sock address and length.

UCP_LISTENER_PARAM_FIELD_ACCEPT_←↩

HANDLER
User's callback and argument for handling the
creation of an endpoint. User's callback and argument
for handling the incoming connection request.

UCP_LISTENER_PARAM_FIELD_CONN_HANDLER

6.1.3.4.4 ucp_worker_address_flags_t

enum ucp_worker_address_flags_t

The enumeration list describes possible UCP worker address flags, indicating what needs to be included to the
worker address returned by ucp_worker_query() routine.

Enumerator

UCP_WORKER_ADDRESS_FLAG_NET_ONLY Pack addresses of network devices only. Using such
shortened addresses for the remote node peers will reduce
the amount of wireup data being exchanged during
connection establishment phase.

6.1.3.4.5 ucp_worker_attr_field

enum ucp_worker_attr_field

The enumeration allows specifying which fields in ucp_worker_attr_t are present. It is used to enable backward
compatibility support.

Enumerator

UCP_WORKER_ATTR_FIELD_THREAD_MODE UCP thread mode
UCP_WORKER_ATTR_FIELD_ADDRESS UCP address

UCP_WORKER_ATTR_FIELD_ADDRESS_FLAGS UCP address flags

UCP_WORKER_ATTR_FIELD_MAX_AM_HEADER Maximum header size used by UCP AM API

UCP_WORKER_ATTR_FIELD_NAME UCP worker name
UCP_WORKER_ATTR_FIELD_MAX_INFO_STRING Maximum size of info string

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 35

6.1.3.4.6 ucp_worker_address_attr_field

enum ucp_worker_address_attr_field

The enumeration allows specifying which fields in ucp_worker_address_attr_t are present. It is used to enable
backward compatibility support.

Enumerator

UCP_WORKER_ADDRESS_ATTR_FIELD_UID Unique id of the worker

6.1.3.4.7 ucp_listener_attr_field

enum ucp_listener_attr_field

The enumeration allows specifying which fields in ucp_listener_attr_t are present. It is used to enable backward
compatibility support.

Enumerator

UCP_LISTENER_ATTR_FIELD_SOCKADDR Sockaddr used for listening

6.1.3.4.8 ucp_conn_request_attr_field

enum ucp_conn_request_attr_field

The enumeration allows specifying which fields in ucp_conn_request_attr_t are present. It is used to enable back-
ward compatibility support.

Enumerator

UCP_CONN_REQUEST_ATTR_FIELD_CLIENT_ADDR Client's address
UCP_CONN_REQUEST_ATTR_FIELD_CLIENT_ID Remote client id

6.1.3.4.9 ucp_am_cb_flags

enum ucp_am_cb_flags

Flags that indicate how to handle UCP Active Messages.

Enumerator

UCP_AM_FLAG_WHOLE_MSG Indicates that the entire message will be handled in one callback.

UCP_AM_FLAG_PERSISTENT_DATA Guarantees that the specified ucp_am_recv_callback_t callback, will
always be called with UCP_AM_RECV_ATTR_FLAG_DATA flag set,
so the data will be accessible outside the callback, until
ucp_am_data_release is called.

6.1.3.4.10 ucp_send_am_flags

enum ucp_send_am_flags

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

36 Module Documentation

Flags dictate the behavior of ucp_am_send_nb and ucp_am_send_nbx routines.

Enumerator

UCP_AM_SEND_FLAG_REPLY Force relevant reply endpoint to be passed to the data callback
on the receiver.

UCP_AM_SEND_FLAG_EAGER Force UCP to use only eager protocol for AM sends.

UCP_AM_SEND_FLAG_RNDV Force UCP to use only rendezvous protocol for AM sends.

UCP_AM_SEND_FLAG_COPY_HEADER The flag indicates that the header should be copied to an internal
buffer in case it's needed after the send function returns. If this
flag is specified, the header can be released immediately after
the send function returns, even if the non-blocking send request
is not completed.

UCP_AM_SEND_REPLY Backward compatibility.

6.1.3.4.11 ucp_wakeup_event_types

enum ucp_wakeup_event_types

The enumeration allows specifying which events are expected on wakeup. Empty events are possible for any type
of event except for UCP_WAKEUP_TX and UCP_WAKEUP_RX.

Note

Send completions are reported by POLLIN-like events (see poll man page). Since outgoing operations can be
initiated at any time, UCP does not generate POLLOUT-like events, although it must be noted that outgoing
operations may be queued depending upon resource availability.

Enumerator

UCP_WAKEUP_RMA Remote memory access send completion

UCP_WAKEUP_AMO Atomic operation send completion

UCP_WAKEUP_TAG_SEND Tag send completion

UCP_WAKEUP_TAG_RECV Tag receive completion

UCP_WAKEUP_TX This event type will generate an event on completion of any outgoing operation
(complete or partial, according to the underlying protocol) for any type of
transfer (send, atomic, or RMA).

UCP_WAKEUP_RX This event type will generate an event on completion of any receive operation
(complete or partial, according to the underlying protocol).

UCP_WAKEUP_EDGE Use edge-triggered wakeup. The event file descriptor will be signaled only for
new events, rather than existing ones.

6.1.3.5 Function Documentation

6.1.3.5.1 ucp_worker_create()

ucs_status_t ucp_worker_create (

ucp_context_h context,

const ucp_worker_params_t ∗ params,

ucp_worker_h ∗ worker_p)

This routine allocates and initializes a worker object. Each worker is associated with one and only one application

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 37

context. In the same time, an application context can create multiple workers in order to enable concurrent access
to communication resources. For example, application can allocate a dedicated worker for each application thread,
where every worker can be progressed independently of others.

Note

The worker object is allocated within context of the calling thread

Parameters

in context Handle to UCP application context.

in params User defined ucp_worker_params_t configurations for the UCP worker.

out worker←↩

_p
A pointer to the worker object allocated by the UCP library

Returns

Error code as defined by ucs_status_t

Examples

ucp_client_server.c, and ucp_hello_world.c.

6.1.3.5.2 ucp_worker_destroy()

void ucp_worker_destroy (

ucp_worker_h worker)

This routine releases the resources associated with a UCP worker.

Warning

Once the UCP worker destroy the worker handle cannot be used with any UCP routine.

The destroy process releases and shuts down all resources associated with the worker.

Parameters

in worker Worker object to destroy.

Examples

ucp_client_server.c, and ucp_hello_world.c.

6.1.3.5.3 ucp_worker_query()

ucs_status_t ucp_worker_query (

ucp_worker_h worker,

ucp_worker_attr_t ∗ attr)

This routine fetches information about the worker.

Parameters

in worker Worker object to query.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

38 Module Documentation

Parameters

out attr Filled with attributes of worker.

Returns

Error code as defined by ucs_status_t

Examples

ucp_hello_world.c.

6.1.3.5.4 ucp_worker_print_info()

void ucp_worker_print_info (

ucp_worker_h worker,

FILE ∗ stream)

This routine prints information about the protocols being used, thresholds, UCT transport methods, and other useful
information associated with the worker.

Parameters

in worker Worker object to print information for.

in stream Output stream to print the information to.

6.1.3.5.5 ucp_worker_release_address()

void ucp_worker_release_address (

ucp_worker_h worker,

ucp_address_t ∗ address)

This routine release an address handle associated within the worker object.

Warning

Once the address released the address handle cannot be used with any UCP routine.

Parameters

in worker Worker object that is associated with the address object.

in address Address to release; the address object has to be allocated using ucp_worker_query() routine.

Examples

ucp_hello_world.c.

6.1.3.5.6 ucp_worker_address_query()

ucs_status_t ucp_worker_address_query (

ucp_address_t ∗ address,

ucp_worker_address_attr_t ∗ attr)

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 39

This routine fetches information about the worker address. The address can be either of local or remote worker.

Parameters

in address Worker address to query.

out attr Filled with attributes of the worker address.

Returns

Error code as defined by ucs_status_t.

6.1.3.5.7 ucp_worker_progress()

unsigned ucp_worker_progress (

ucp_worker_h worker)

This routine explicitly progresses all communication operations on a worker.

Note

• Typically, request wait and test routines call this routine to progress any outstanding operations.

• Transport layers, implementing asynchronous progress using threads, require callbacks and other user
code to be thread safe.

• The state of communication can be advanced (progressed) by blocking routines. Nevertheless, the
non-blocking routines can not be used for communication progress.

Parameters

in worker Worker to progress.

Returns

Non-zero if any communication was progressed, zero otherwise.

Examples

ucp_client_server.c, and ucp_hello_world.c.

6.1.3.5.8 ucp_stream_worker_poll()

ssize_t ucp_stream_worker_poll (

ucp_worker_h worker,

ucp_stream_poll_ep_t ∗ poll_eps,

size_t max_eps,

unsigned flags)

This non-blocking routine returns endpoints on a worker which are ready to consume streaming data. The ready
endpoints are placed in poll_eps array, and the function return value indicates how many are there.

Parameters

in worker Worker to poll.

out poll_eps Pointer to array of endpoints, should be allocated by user.

in max_eps Maximum number of endpoints that should be filled in poll_eps.

in flags Reserved for future use.
c⃝ 2025 Unified Communication X (UCX). All rights reserved.

40 Module Documentation

Returns

Negative value indicates an error according to ucs_status_t. On success, non-negative value (less or equal
max_eps) indicates actual number of endpoints filled in poll_eps array.

6.1.3.5.9 ucp_listener_create()

ucs_status_t ucp_listener_create (

ucp_worker_h worker,

const ucp_listener_params_t ∗ params,

ucp_listener_h ∗ listener_p)

This routine creates a new listener object that is bound to a specific local address. The listener will listen to incoming
connection requests. After receiving a request from the remote peer, an endpoint to this peer will be created - either
right away or by calling ucp_ep_create, as specified by the callback type in ucp_listener_params_t. The user's
callback will be invoked once the endpoint is created.

Parameters

in worker Worker object to create the listener on.

in params User defined ucp_listener_params_t configurations for the ucp_listener_h.

out listener←↩

_p
A handle to the created listener, can be released by calling ucp_listener_destroy

Returns

Error code as defined by ucs_status_t

Note

ucp_listener_params_t::conn_handler or ucp_listener_params_t::accept_handler must be provided to be able
to handle incoming connections.

Examples

ucp_client_server.c.

6.1.3.5.10 ucp_listener_destroy()

void ucp_listener_destroy (

ucp_listener_h listener)

This routine unbinds the worker from the given handle and stops listening for incoming connection requests on it.

Parameters

in listener A handle to the listener to stop listening on.

Examples

ucp_client_server.c.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 41

6.1.3.5.11 ucp_listener_query()

ucs_status_t ucp_listener_query (

ucp_listener_h listener,

ucp_listener_attr_t ∗ attr)

This routine fetches information about the listener.

Parameters

in listener listener object to query.

out attr Filled with attributes of the listener.

Returns

Error code as defined by ucs_status_t

Examples

ucp_client_server.c.

6.1.3.5.12 ucp_conn_request_query()

ucs_status_t ucp_conn_request_query (

ucp_conn_request_h conn_request,

ucp_conn_request_attr_t ∗ attr)

This routine fetches information about the connection request.

Parameters

in conn_request connection request object to query.

out attr Filled with attributes of the connection request.

Returns

Error code as defined by ucs_status_t

Examples

ucp_client_server.c.

6.1.3.5.13 ucp_listener_reject()

ucs_status_t ucp_listener_reject (

ucp_listener_h listener,

ucp_conn_request_h conn_request)

Reject the incoming connection request and release associated resources. If the remote initiator endpoint has set
an ucp_ep_params_t::err_handler, it will be invoked with status UCS_ERR_REJECTED.

Parameters

in listener Handle to the listener on which the connection request was received.

in conn_request Handle to the connection request to reject.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

42 Module Documentation

Returns

Error code as defined by ucs_status_t

Examples

ucp_client_server.c.

6.1.3.5.14 ucp_worker_set_am_recv_handler()

ucs_status_t ucp_worker_set_am_recv_handler (

ucp_worker_h worker,

const ucp_am_handler_param_t ∗ param)

This routine installs a user defined callback to handle incoming Active Messages with a specific id. This callback is
called whenever an Active Message that was sent from the remote peer by ucp_am_send_nbx is received on this
worker.

Warning

Handlers set by this function are not compatible with ucp_am_send_nb routine.

Parameters

in worker UCP worker on which to set the Active Message handler.

in param Active Message handler parameters, as defined by ucp_am_handler_param_t.

Returns

error code if the worker does not support Active Messages or requested callback flags.

Examples

ucp_client_server.c.

6.1.3.5.15 ucp_worker_fence()

ucs_status_t ucp_worker_fence (

ucp_worker_h worker)

This routine ensures ordering of non-blocking communication operations on the UCP worker. Communication oper-
ations issued on a particular endpoint created on the worker prior to this call are guaranteed to be completed before
any communication operations issued on the same endpoint after this call.

Note

The primary difference between ucp_worker_fence() and the ucp_worker_flush_nb() is the fact the fence rou-
tine does not guarantee completion of the operations on the call return but only ensures the order between
communication operations. The flush operation on return guarantees that all operations are completed and
corresponding memory regions were updated.

Parameters

in worker UCP worker.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 43

Returns

Error code as defined by ucs_status_t

6.1.3.5.16 ucp_worker_flush_nbx()

ucs_status_ptr_t ucp_worker_flush_nbx (

ucp_worker_h worker,

const ucp_request_param_t ∗ param)

This routine flushes all outstanding AMO and RMA communications on the worker. All the AMO and RMA operations
issued on the worker prior to this call are completed both at the origin and at the target when this call returns.

Note

For description of the differences between flush and fence operations please see ucp_worker_fence()

Parameters

in worker UCP worker.
in param Operation parameters, see ucp_request_param_t

Returns

NULL - The flush operation was completed immediately.

UCS_PTR_IS_ERR(_ptr) - The flush operation failed.

otherwise - Flush operation was scheduled and can be completed in any point in time. The request handle is
returned to the application in order to track progress.

6.1.3.5.17 ucp_worker_flush()

ucs_status_t ucp_worker_flush (

ucp_worker_h worker)

Deprecated Replaced by ucp_worker_flush_nb. The following example implements the same functionality using
ucp_worker_flush_nb :

ucs_status_t worker_flush(ucp_worker_h worker)
{

void *request = ucp_worker_flush_nb(worker);
if (request == NULL) {

return UCS_OK;
} else if (UCS_PTR_IS_ERR(request)) {

return UCS_PTR_STATUS(request);
} else {

ucs_status_t status;
do {

ucp_worker_progress(worker);
status = ucp_request_check_status(request);

} while (status == UCS_INPROGRESS);
ucp_request_release(request);
return status;

}
}

This routine flushes all outstanding AMO and RMA communications on the worker. All the AMO and RMA operations
issued on the worker prior to this call are completed both at the origin and at the target when this call returns.

Note

For description of the differences between flush and fence operations please see ucp_worker_fence()

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

44 Module Documentation

Parameters

in worker UCP worker.

Returns

Error code as defined by ucs_status_t

6.1.3.5.18 ucp_worker_get_address()

ucs_status_t ucp_worker_get_address (

ucp_worker_h worker,

ucp_address_t ∗∗ address_p,

size_t ∗ address_length_p)

Deprecated Use ucp_worker_query with the flag UCP_WORKER_ATTR_FIELD_ADDRESS in order to obtain the
worker address.

This routine returns the address of the worker object. This address can be passed to remote instances of the UCP
library in order to connect to this worker. The memory for the address handle is allocated by this function, and must
be released by using ucp_worker_release_address() routine.

Parameters

in worker Worker object whose address to return.

out address_p A pointer to the worker address.

out address_length←↩

_p
The size in bytes of the address.

Returns

Error code as defined by ucs_status_t

6.1.3.5.19 ucp_worker_set_am_handler()

ucs_status_t ucp_worker_set_am_handler (

ucp_worker_h worker,

uint16_t id,

ucp_am_callback_t cb,

void ∗ arg,

uint32_t flags)

Deprecated Use ucp_worker_set_am_recv_handler instead.

This routine installs a user defined callback to handle incoming Active Messages with a specific id. This callback
is called whenever an Active Message that was sent from the remote peer by ucp_am_send_nb is received on this
worker.

Parameters

in worker UCP worker on which to set the Active Message handler.

in id Active Message id.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 45

Parameters

in cb Active Message callback. NULL to clear.

in arg Active Message argument, which will be passed in to every invocation of the callback as the
arg argument.

in flags Dictates how an Active Message is handled on the remote endpoint. Currently only
UCP_AM_FLAG_WHOLE_MSG is supported, which indicates the callback will not be invoked
until all data has arrived.

Returns

error code if the worker does not support Active Messages or requested callback flags.

6.1.3.5.20 ucp_worker_flush_nb()

ucs_status_ptr_t ucp_worker_flush_nb (

ucp_worker_h worker,

unsigned flags,

ucp_send_callback_t cb)

Deprecated Use ucp_worker_flush_nbx instead.

This routine flushes all outstanding AMO and RMA communications on the worker. All the AMO and RMA operations
issued on the worker prior to this call are completed both at the origin and at the target when this call returns.

Note

For description of the differences between flush and fence operations please see ucp_worker_fence()

Parameters

in worker UCP worker.
in flags Flags for flush operation. Reserved for future use.

in cb Callback which will be called when the flush operation completes.

Returns

NULL - The flush operation was completed immediately.

UCS_PTR_IS_ERR(_ptr) - The flush operation failed.

otherwise - Flush operation was scheduled and can be completed in any point in time. The request handle is
returned to the application in order to track progress. The application is responsible for releasing the handle
using ucp_request_free() routine.

6.1.4 UCP Memory routines

Data Structures

• struct ucp_rkey_compare_params

Tuning parameters for the comparison function ucp_rkey_compare. More...

• struct ucp_mem_map_params

Tuning parameters for the UCP memory mapping. More...

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

46 Module Documentation

• struct ucp_mem_advise_params

Tuning parameters for the UCP memory advice. More...

• struct ucp_memh_pack_params

Memory handle pack parameters passed to ucp_memh_pack. More...

• struct ucp_memh_buffer_release_params

Memory handle release parameters passed to ucp_memh_buffer_release. More...

• struct ucp_mem_attr

Attributes of the UCP Memory handle, filled by ucp_mem_query function. More...

Typedefs

• typedef struct ucp_rkey_compare_params ucp_rkey_compare_params_t

Tuning parameters for the comparison function ucp_rkey_compare.

• typedef struct ucp_mem_map_params ucp_mem_map_params_t

Tuning parameters for the UCP memory mapping.

• typedef enum ucp_mem_advice ucp_mem_advice_t

list of UCP memory use advice.

• typedef struct ucp_mem_advise_params ucp_mem_advise_params_t

Tuning parameters for the UCP memory advice.

• typedef struct ucp_memh_pack_params ucp_memh_pack_params_t

Memory handle pack parameters passed to ucp_memh_pack.

• typedef struct ucp_memh_buffer_release_params ucp_memh_buffer_release_params_t

Memory handle release parameters passed to ucp_memh_buffer_release.

• typedef struct ucp_rkey ∗ ucp_rkey_h

UCP Remote memory handle.

• typedef struct ucp_mem ∗ ucp_mem_h

UCP Memory handle.

• typedef struct ucp_mem_attr ucp_mem_attr_t

Attributes of the UCP Memory handle, filled by ucp_mem_query function.

Enumerations

• enum ucp_mem_map_params_field {
UCP_MEM_MAP_PARAM_FIELD_ADDRESS = UCS_BIT(0) , UCP_MEM_MAP_PARAM_FIELD_LENGTH
= UCS_BIT(1) , UCP_MEM_MAP_PARAM_FIELD_FLAGS = UCS_BIT(2) , UCP_MEM_MAP_PARAM_FIELD_PROT
= UCS_BIT(3) ,
UCP_MEM_MAP_PARAM_FIELD_MEMORY_TYPE = UCS_BIT(4) , UCP_MEM_MAP_PARAM_FIELD_EXPORTED_MEMH_BUFFER
= UCS_BIT(5) }

UCP memory mapping parameters field mask.

• enum ucp_mem_advise_params_field { UCP_MEM_ADVISE_PARAM_FIELD_ADDRESS = UCS_BIT(0) ,
UCP_MEM_ADVISE_PARAM_FIELD_LENGTH = UCS_BIT(1) , UCP_MEM_ADVISE_PARAM_FIELD_ADVICE
= UCS_BIT(2) }

UCP memory advice parameters field mask.

• enum {
UCP_MEM_MAP_NONBLOCK = UCS_BIT(0) , UCP_MEM_MAP_ALLOCATE = UCS_BIT(1) , UCP_MEM_MAP_FIXED
= UCS_BIT(2) , UCP_MEM_MAP_SYMMETRIC_RKEY = UCS_BIT(3) ,
UCP_MEM_MAP_LOCK = UCS_BIT(4) }

UCP memory mapping flags.

• enum { UCP_MEM_MAP_PROT_LOCAL_READ = UCS_BIT(0) , UCP_MEM_MAP_PROT_LOCAL_WRITE
= UCS_BIT(1) , UCP_MEM_MAP_PROT_REMOTE_READ = UCS_BIT(8) , UCP_MEM_MAP_PROT_REMOTE_WRITE
= UCS_BIT(9) }

UCP memory mapping protection mode.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 47

• enum ucp_mem_advice { UCP_MADV_NORMAL = 0 , UCP_MADV_WILLNEED }

list of UCP memory use advice.

• enum ucp_memh_pack_params_field { UCP_MEMH_PACK_PARAM_FIELD_FLAGS = UCS_BIT(0) }

UCP memory handle packing parameters field mask.

• enum ucp_memh_pack_flags { UCP_MEMH_PACK_FLAG_EXPORT = UCS_BIT(0) }

UCP memory handle flags.

• enum ucp_mem_attr_field { UCP_MEM_ATTR_FIELD_ADDRESS = UCS_BIT(0) , UCP_MEM_ATTR_FIELD_LENGTH
= UCS_BIT(1) , UCP_MEM_ATTR_FIELD_MEM_TYPE = UCS_BIT(2) }

UCP Memory handle attributes field mask.

Functions

• ucs_status_t ucp_rkey_compare (ucp_worker_h worker, ucp_rkey_h rkey1, ucp_rkey_h rkey2, const
ucp_rkey_compare_params_t ∗params, int ∗result)

Compare two remote keys.

• ucs_status_t ucp_mem_map (ucp_context_h context, const ucp_mem_map_params_t ∗params,
ucp_mem_h ∗memh_p)

Map or allocate memory for zero-copy operations.

• ucs_status_t ucp_mem_unmap (ucp_context_h context, ucp_mem_h memh)

Unmap memory segment.

• ucs_status_t ucp_mem_query (const ucp_mem_h memh, ucp_mem_attr_t ∗attr)

query mapped memory segment

• void ucp_mem_print_info (const char ∗mem_spec, ucp_context_h context, FILE ∗stream)

Print memory mapping information.

• ucs_status_t ucp_mem_advise (ucp_context_h context, ucp_mem_h memh, ucp_mem_advise_params_t
∗params)

give advice about the use of memory

• ucs_status_t ucp_memh_pack (ucp_mem_h memh, const ucp_memh_pack_params_t ∗params, void
∗∗buffer_p, size_t ∗buffer_size_p)

Pack a memory handle to a buffer specified by the user.

• void ucp_memh_buffer_release (void ∗buffer, const ucp_memh_buffer_release_params_t ∗params)

Release packed memory handle buffer.

• ucs_status_t ucp_ep_rkey_unpack (ucp_ep_h ep, const void ∗rkey_buffer, ucp_rkey_h ∗rkey_p)

Create remote access key from packed buffer.

• ucs_status_t ucp_rkey_ptr (ucp_rkey_h rkey, uint64_t raddr, void ∗∗addr_p)

Get a local pointer to remote memory.

• void ucp_rkey_destroy (ucp_rkey_h rkey)

Destroy the remote key.

• ucs_status_t ucp_rkey_pack (ucp_context_h context, ucp_mem_h memh, void ∗∗rkey_buffer_p, size_←↩

t ∗size_p)

Pack memory region remote access key.

• void ucp_rkey_buffer_release (void ∗rkey_buffer)

Release packed remote key buffer.

6.1.4.1 Detailed Description

UCP Memory routines

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

48 Module Documentation

6.1.4.2 Data Structure Documentation

6.1.4.2.1 struct ucp_rkey_compare_params

The structure defines the parameters that can be used for UCP library remote keys comparison using
ucp_rkey_compare routine.

Data Fields

uint64_t field_mask Mask of valid fields in this structure, must currently be zero. Fields not specified in this
mask will be ignored. Provides ABI compatibility with respect to adding new fields.

6.1.4.2.2 struct ucp_mem_map_params

The structure defines the parameters that are used for the UCP memory mapping tuning during the ucp_mem_map
routine.

Data Fields

uint64_t field_mask Mask of valid fields in this structure, using bits from
ucp_mem_map_params_field. Fields not specified in this
mask will be ignored. Provides ABI compatibility with respect
to adding new fields.

void ∗ address If the address is not NULL, the routine maps (registers) the
memory segment pointed to by this address. If the pointer is
NULL, the library allocates mapped (registered) memory
segment and returns its address in this argument.
Therefore, this value is optional. If it's not set (along with its
corresponding bit in the field_mask -
UCP_MEM_MAP_PARAM_FIELD_ADDRESS), the
ucp_mem_map routine will consider address as set to NULL
and will allocate memory.

size_t length Length (in bytes) to allocate or map (register). This field is
mandatory for filling (along with its corresponding bit in the
field_mask - UCP_MEM_MAP_PARAM_FIELD_LENGTH).
The ucp_mem_map routine will return with an error if the
length isn't specified.

unsigned flags Allocation flags, e.g. UCP_MEM_MAP_NONBLOCK. This
value is optional. If it's not set (along with its corresponding
bit in the field_mask -
UCP_MEM_MAP_PARAM_FIELD_FLAGS), the
ucp_mem_map routine will consider the flags as set to zero.

unsigned prot Memory protection mode, e.g.
UCP_MEM_MAP_PROT_LOCAL_READ. This value is
optional. If it's not set, the ucp_mem_map routine will
consider the flags as set to UCP_MEM_MAP_PROT_←↩

LOCAL_READ|UCP_MEM_MAP_PROT_LOCAL_WRITE|
UCP_MEM_MAP_PROT_REMOTE_READ|UCP_MEM_←↩

MAP_PROT_REMOTE_WRITE.
ucs_memory_type_t memory_type

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 49

Data Fields

const void ∗ exported_memh_buffer Exported memory handle buffer as returned by
ucp_mem_map function for a memory handle created and
packed by ucp_memh_pack with
UCP_MEMH_PACK_FLAG_EXPORT flag. If this field is
specified for ucp_mem_map function, a resulting memory
handle will be a mapping of peer memory instead of local
memory. If the field is not set (along with its corresponding
bit in the field_mask -
UCP_MEM_MAP_PARAM_FIELD_EXPORTED_MEMH_BUFFER),
the ucp_mem_map routine will consider the memory handle
buffer to be set to NULL by default.

6.1.4.2.3 struct ucp_mem_advise_params

This structure defines the parameters that are used for the UCP memory advice tuning during the ucp_mem_advise
routine.

Data Fields

uint64_t field_mask Mask of valid fields in this structure, using bits from
ucp_mem_advise_params_field. All fields are mandatory. Provides ABI
compatibility with respect to adding new fields.

void ∗ address Memory base address.

size_t length Length (in bytes) to allocate or map (register).

ucp_mem_advice_t advice Memory use advice ucp_mem_advice

6.1.4.2.4 struct ucp_memh_pack_params

This structure defines the parameters that are used for packing the UCP memory handle during the
ucp_memh_pack routine.

Data Fields

uint64_t field_mask Mask of valid fields in this structure. Fields not specified in this mask will be ignored.
Provides ABI compatibility with respect to adding new fields.

uint64_t flags Flags to control packing of a memory handle.

6.1.4.2.5 struct ucp_memh_buffer_release_params

This structure defines the parameters that are used for releasing the UCP memory handle buffer during the
ucp_memh_buffer_release routine.

Data Fields

uint64_t field_mask Mask of valid fields in this structure. All fields are mandatory. Provides ABI
compatibility with respect to adding new fields.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

50 Module Documentation

6.1.4.2.6 struct ucp_mem_attr

Data Fields

uint64_t field_mask Mask of valid fields in this structure, using bits from ucp_mem_attr_field.
Fields not specified in this mask will be ignored. Provides ABI
compatibility with respect to adding new fields.

void ∗ address Address of the memory segment.

size_t length Size of the memory segment.

ucs_memory_type_t mem_type Type of allocated or registered memory

6.1.4.3 Typedef Documentation

6.1.4.3.1 ucp_rkey_compare_params_t

typedef struct ucp_rkey_compare_params ucp_rkey_compare_params_t

The structure defines the parameters that can be used for UCP library remote keys comparison using
ucp_rkey_compare routine.

6.1.4.3.2 ucp_mem_map_params_t

typedef struct ucp_mem_map_params ucp_mem_map_params_t

The structure defines the parameters that are used for the UCP memory mapping tuning during the ucp_mem_map
routine.

6.1.4.3.3 ucp_mem_advice_t

typedef enum ucp_mem_advice ucp_mem_advice_t

The enumeration list describes memory advice supported by ucp_mem_advise() function.

6.1.4.3.4 ucp_mem_advise_params_t

typedef struct ucp_mem_advise_params ucp_mem_advise_params_t

This structure defines the parameters that are used for the UCP memory advice tuning during the ucp_mem_advise
routine.

6.1.4.3.5 ucp_memh_pack_params_t

typedef struct ucp_memh_pack_params ucp_memh_pack_params_t

This structure defines the parameters that are used for packing the UCP memory handle during the
ucp_memh_pack routine.

6.1.4.3.6 ucp_memh_buffer_release_params_t

typedef struct ucp_memh_buffer_release_params ucp_memh_buffer_release_params_t

This structure defines the parameters that are used for releasing the UCP memory handle buffer during the
ucp_memh_buffer_release routine.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 51

6.1.4.3.7 ucp_rkey_h

typedef struct ucp_rkey∗ ucp_rkey_h

Remote memory handle is an opaque object representing remote memory access information. Typically, the handle
includes a memory access key and other network hardware specific information, which are input to remote memory
access operations, such as PUT, GET, and ATOMIC. The object is communicated to remote peers to enable an
access to the memory region.

6.1.4.3.8 ucp_mem_h

typedef struct ucp_mem∗ ucp_mem_h

Memory handle is an opaque object representing a memory region allocated through UCP library, which is optimized
for remote memory access operations (zero-copy operations). The memory handle is a self-contained object, which
includes the information required to access the memory region locally, while remote key is used to access it remotely.
The memory could be registered to one or multiple network resources that are supported by UCP, such as Infini←↩

Band, Gemini, and others.

6.1.4.3.9 ucp_mem_attr_t

typedef struct ucp_mem_attr ucp_mem_attr_t

6.1.4.4 Enumeration Type Documentation

6.1.4.4.1 ucp_mem_map_params_field

enum ucp_mem_map_params_field

The enumeration allows specifying which fields in ucp_mem_map_params_t are present. It is used to enable
backward compatibility support.

Enumerator

UCP_MEM_MAP_PARAM_FIELD_ADDRESS Address of the memory that will be used in the
ucp_mem_map routine.

UCP_MEM_MAP_PARAM_FIELD_LENGTH The size of memory that will be allocated or registered
in the ucp_mem_map routine.

UCP_MEM_MAP_PARAM_FIELD_FLAGS Allocation flags.

UCP_MEM_MAP_PARAM_FIELD_PROT Memory protection mode.

UCP_MEM_MAP_PARAM_FIELD_MEMORY_TYPE Memory type.

UCP_MEM_MAP_PARAM_FIELD_EXPORTED_←↩

MEMH_BUFFER
Exported memory handle buffer.

6.1.4.4.2 ucp_mem_advise_params_field

enum ucp_mem_advise_params_field

The enumeration allows specifying which fields in ucp_mem_advise_params_t are present. It is used to enable
backward compatibility support.

Enumerator

UCP_MEM_ADVISE_PARAM_FIELD_ADDRESS Address of the memory

UCP_MEM_ADVISE_PARAM_FIELD_LENGTH The size of memory

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

52 Module Documentation

Enumerator

UCP_MEM_ADVISE_PARAM_FIELD_ADVICE Advice on memory usage

6.1.4.4.3 anonymous enum

anonymous enum

The enumeration list describes the memory mapping flags supported by ucp_mem_map() function.

Enumerator

UCP_MEM_MAP_NONBLOCK Complete the mapping faster, possibly by not populating the pages
in the mapping up-front, and mapping them later when they are
accessed by communication routines.

UCP_MEM_MAP_ALLOCATE Identify requirement for allocation, if passed address is not a
null-pointer, then it will be used as a hint or direct address for
allocation.

UCP_MEM_MAP_FIXED Don't interpret address as a hint: place the mapping at exactly that
address. The address must be a multiple of the page size.

UCP_MEM_MAP_SYMMETRIC_RKEY Register the memory region so its remote access key would likely
be equal to remote access keys received from other peers, when
compared with ucp_rkey_compare. This flag is a hint. When remote
access keys received from different peers are compared equal, they
can be used interchangeably, avoiding the need to keep all of them
in memory.

UCP_MEM_MAP_LOCK Enforce pinning of the memory pages in the mapping and populate
them up-front. This flag is mutually exclusive with
UCP_MEM_MAP_NONBLOCK.

6.1.4.4.4 anonymous enum

anonymous enum

The enumeration list describes the memory mapping protections supported by the ucp_mem_map() function.

Enumerator

UCP_MEM_MAP_PROT_LOCAL_READ Enable local read access.
UCP_MEM_MAP_PROT_LOCAL_WRITE Enable local write access.

UCP_MEM_MAP_PROT_REMOTE_READ Enable remote read access.
UCP_MEM_MAP_PROT_REMOTE_WRITE Enable remote write access.

6.1.4.4.5 ucp_mem_advice

enum ucp_mem_advice

The enumeration list describes memory advice supported by ucp_mem_advise() function.

Enumerator

UCP_MADV_NORMAL No special treatment

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 53

Enumerator

UCP_MADV_WILLNEED can be used on the memory mapped with UCP_MEM_MAP_NONBLOCK to
speed up memory mapping and to avoid page faults when the memory is
accessed for the first time.

6.1.4.4.6 ucp_memh_pack_params_field

enum ucp_memh_pack_params_field

The enumeration allows specifying which fields in ucp_memh_pack_params_t are present. It is used to enable
backward compatibility support.

Enumerator

UCP_MEMH_PACK_PARAM_FIELD_FLAGS Memory handle packing field that will be used in the
ucp_memh_pack routine.

6.1.4.4.7 ucp_memh_pack_flags

enum ucp_memh_pack_flags

The enumeration list describes the memory handle packing flags supported by ucp_memh_pack() function.

Enumerator

UCP_MEMH_PACK_FLAG_EXPORT Pack a memory handle to be exported and used by peers for their
local operations on a memory buffer allocated from same or another
virtual memory space, but physically registered on the same network
device. A peer should call ucp_mem_map with the flag
UCP_MEM_MAP_PARAM_FIELD_EXPORTED_MEMH_BUFFER in
order to import and use a memory handle buffer obtained from
ucp_memh_pack.

6.1.4.4.8 ucp_mem_attr_field

enum ucp_mem_attr_field

The enumeration allows specifying which fields in ucp_mem_attr_t are present. It is used to enable backward
compatibility support.

Enumerator

UCP_MEM_ATTR_FIELD_ADDRESS Virtual address
UCP_MEM_ATTR_FIELD_LENGTH The size of memory region

UCP_MEM_ATTR_FIELD_MEM_TYPE Type of allocated or registered memory

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

54 Module Documentation

6.1.4.5 Function Documentation

6.1.4.5.1 ucp_rkey_compare()

ucs_status_t ucp_rkey_compare (

ucp_worker_h worker,

ucp_rkey_h rkey1,

ucp_rkey_h rkey2,

const ucp_rkey_compare_params_t ∗ params,

int ∗ result)

This routine compares two remote keys. They must belong to the same worker.

It sets the result argument to < 0 if rkey1 is lower than rkey2, 0 if they are equal or > 0 if rkey1 is greater than rkey2.
The result value can be used for sorting remote keys.

Parameters

in worker Worker object both rkeys are referring to

in rkey1 First rkey to compare

in rkey2 Second rkey to compare

in params Additional parameters to the comparison

out result Result of the comparison

Returns

UCS_OK - result contains the comparison result

UCS_ERR_INVALID_PARAM - The routine arguments are invalid

Other - Error code as defined by ucs_status_t

6.1.4.5.2 ucp_mem_map()

ucs_status_t ucp_mem_map (

ucp_context_h context,

const ucp_mem_map_params_t ∗ params,

ucp_mem_h ∗ memh_p)

This routine maps or/and allocates a user-specified memory segment with UCP application context and the network
resources associated with it. If the application specifies NULL as an address for the memory segment, the routine
allocates a mapped memory segment and returns its address in the address_p argument. The network stack
associated with an application context can typically send and receive data from the mapped memory without CPU
intervention; some devices and associated network stacks require the memory to be mapped to send and receive
data. The memory handle includes all information required to access the memory locally using UCP routines, while
remote registration handle provides an information that is necessary for remote memory access.

Note

Another well know terminology for the ¨map¨ operation that is typically used in the context of networking is
memory ¨registration¨ or ¨pinning¨. The UCP library registers the memory the available hardware so it can be
assessed directly by the hardware.

Memory mapping assumptions:

• A given memory segment can be mapped by several different communication stacks, if these are compatible.

• The memh_p handle returned may be used with any sub-region of the mapped memory.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 55

• If a large segment is registered, and then segmented for subsequent use by a user, then the user is respon-
sible for segmentation and subsequent management.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

56 Module Documentation

Table 6.77: Matrix of behavior

parameter/flag NONBLOCK ALLOCATE FIXED address result

value 0/1 - the valueonly affects theregister/mapphase

0 0 0 error if length > 0

1 0 0 alloc+register

0 1 0 error
0 0 defined register

1 1 0 error
1 0 defined alloc+register,hint

0 1 defined error
1 1 defined alloc+register,fixed

Note

• register means that the memory will be registered in corresponding transports for RMA/AMO operations.
This case intends that the memory was allocated by user before.

• alloc+register means that the memory will be allocated in the memory provided by the system and
registered in corresponding transports for RMA/AMO operations.

• alloc+register,hint means that the memory will be allocated with using ucp_mem_map_params::address
as a hint and registered in corresponding transports for RMA/AMO operations.

• alloc+register,fixed means that the memory will be allocated and registered in corresponding transports
for RMA/AMO operations.

• error is an erroneous combination of the parameters.

Parameters

in context Application context to map (register) and allocate the memory on.

in params User defined ucp_mem_map_params_t configurations for the UCP memory handle.

out memh←↩

_p
UCP handle for the allocated segment.

Returns

Error code as defined by ucs_status_t

6.1.4.5.3 ucp_mem_unmap()

ucs_status_t ucp_mem_unmap (

ucp_context_h context,

ucp_mem_h memh)

This routine unmaps a user specified memory segment, that was previously mapped using the ucp_mem_map()
routine. The unmap routine will also release the resources associated with the memory handle. When the function
returns, the ucp_mem_h and associated remote key will be invalid and cannot be used with any UCP routine.

Note

Another well know terminology for the ¨unmap¨ operation that is typically used in the context of networking
is memory ¨de-registration¨. The UCP library de-registers the memory the available hardware so it can be
returned back to the operation system.

Error cases:

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 57

• Once memory is unmapped a network access to the region may cause a failure.

Parameters

in context Application context which was used to allocate/map the memory.

in memh Handle to memory region.

Returns

Error code as defined by ucs_status_t

6.1.4.5.4 ucp_mem_query()

ucs_status_t ucp_mem_query (

const ucp_mem_h memh,

ucp_mem_attr_t ∗ attr)

This routine returns address and length of memory segment mapped with ucp_mem_map() routine.

Parameters

in memh Handle to memory region.

out attr Filled with attributes of the UCP memory handle.

Returns

Error code as defined by ucs_status_t

6.1.4.5.5 ucp_mem_print_info()

void ucp_mem_print_info (

const char ∗ mem_spec,

ucp_context_h context,

FILE ∗ stream)

This routine maps memory and prints information about the created memory handle: including the mapped memory
length, the allocation method, and other useful information associated with the memory handle.

Parameters

in mem_spec Size and optional type of the memory to map. The format of the string is:
¨<size>[,<type>]¨. For example:

• ¨32768¨ : allocate 32 kilobytes of host memory.

• ¨1m,cuda¨ : allocate 1 megabyte of cuda memory.

in context The context on which the memory is mapped.

in stream Output stream on which to print the information.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

58 Module Documentation

6.1.4.5.6 ucp_mem_advise()

ucs_status_t ucp_mem_advise (

ucp_context_h context,

ucp_mem_h memh,

ucp_mem_advise_params_t ∗ params)

This routine advises the UCP about how to handle memory range beginning at address and size of length bytes.
This call does not influence the semantics of the application, but may influence its performance. The UCP may
ignore the advice.

Parameters

in context Application context which was used to allocate/map the memory.

in memh Handle to memory region.

in params Memory base address and length. The advice field is used to pass memory use advice as
defined in the ucp_mem_advice list The memory range must belong to the memh

Returns

Error code as defined by ucs_status_t

6.1.4.5.7 ucp_memh_pack()

ucs_status_t ucp_memh_pack (

ucp_mem_h memh,

const ucp_memh_pack_params_t ∗ params,

void ∗∗ buffer_p,

size_t ∗ buffer_size_p)

This routine allocates a memory buffer and packs a memory handle into the buffer. A packed memory key is an
opaque object that provides the information that is necessary for a peer. This routine packs the memory handle in
a portable format such that the object can be unpacked on any platform supported by the UCP library, e.g. if the
memory handle was packed as a remote memory key (RKEY), it should be unpacked by ucp_ep_rkey_unpack().
In order to release the memory buffer allocated by this routine, the application is responsible for calling the
ucp_memh_buffer_release() routine.

Note

• RKEYs for InfiniBand and Cray Aries networks typically includes InfiniBand and Aries key.

• In order to enable remote direct memory access to the memory associated with the memory handle the
application is responsible for sharing the RKEY with the peers that will initiate the access.

Parameters

in memh Handle to memory region.

in params Memory handle packing parameters, as defined by ucp_memh_pack_params_t.

out buffer_p Memory buffer allocated by the library. The buffer contains the packed memory handle.

out buffer_size←↩

_p
Size (in bytes) of the buffer which contains packed memory handle.

Returns

Error code as defined by ucs_status_t

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 59

6.1.4.5.8 ucp_memh_buffer_release()

void ucp_memh_buffer_release (

void ∗ buffer,

const ucp_memh_buffer_release_params_t ∗ params)

This routine releases the buffer that was allocated using ucp_memh_pack().

Warning

• Once memory is released, an access to the memory may cause undefined behavior.

• If the input memory address was not allocated using ucp_memh_pack() routine, the behavior of this
routine is undefined.

Parameters

in buffer Buffer to release.
in params Memory handle buffer release parameters, as defined by ucp_memh_buffer_release_params_t.

6.1.4.5.9 ucp_ep_rkey_unpack()

ucs_status_t ucp_ep_rkey_unpack (

ucp_ep_h ep,

const void ∗ rkey_buffer,

ucp_rkey_h ∗ rkey_p)

This routine unpacks the remote key (RKEY) object into the local memory such that it can be accessed and used
by UCP routines. The RKEY object has to be packed using the ucp_rkey_pack() routine. Application code should
not make any changes to the content of the RKEY buffer.

Note

The application is responsible for releasing the RKEY object when it is no longer needed, by calling the
ucp_rkey_destroy() routine.

The remote key object can be used for communications only on the endpoint on which it was unpacked.

Parameters

in ep Endpoint to access using the remote key.

in rkey_buffer Packed rkey.

out rkey_p Remote key handle.

Returns

Error code as defined by ucs_status_t

6.1.4.5.10 ucp_rkey_ptr()

ucs_status_t ucp_rkey_ptr (

ucp_rkey_h rkey,

uint64_t raddr,

void ∗∗ addr_p)

This routine returns a local pointer to the remote memory described by the rkey.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

60 Module Documentation

Note

This routine can return a valid pointer only for the endpoints that are reachable via shared memory.

Parameters

in rkey A remote key handle.

in raddr A remote memory address within the memory area described by the rkey.

out addr←↩

_p
A pointer that can be used for direct access to the remote memory.

Returns

Error code as defined by ucs_status_t if the remote memory cannot be accessed directly or the remote mem-
ory address is not valid.

6.1.4.5.11 ucp_rkey_destroy()

void ucp_rkey_destroy (

ucp_rkey_h rkey)

This routine destroys the RKEY object and the memory that was allocated using the ucp_ep_rkey_unpack() routine.
This routine also releases any resources that are associated with the RKEY object.

Warning

• Once the RKEY object is released an access to the memory will cause an undefined failure.

• If the RKEY object was not created using ucp_ep_rkey_unpack() routine the behavior of this routine is
undefined.

• The RKEY object must be destroyed after all outstanding operations which are using it are flushed, and
before the endpoint on which it was unpacked is destroyed.

Parameters

in rkey Remote key to destroy.

6.1.4.5.12 ucp_rkey_pack()

ucs_status_t ucp_rkey_pack (

ucp_context_h context,

ucp_mem_h memh,

void ∗∗ rkey_buffer_p,

size_t ∗ size_p)

Deprecated Replaced by ucp_memh_pack().

This routine allocates a memory buffer and packs a remote access key (RKEY) object into it. RKEY is an opaque
object that provides the information that is necessary for remote memory access. This routine packs the RKEY
object in a portable format such that the object can be unpacked on any platform supported by the UCP li-
brary. In order to release the memory buffer allocated by this routine, the application is responsible for calling
the ucp_rkey_buffer_release() routine.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 61

Note

• RKEYs for InfiniBand and Cray Aries networks typically include the InfiniBand and Aries key.

• In order to enable remote direct memory access to the memory associated with the memory handle, the
application is responsible for sharing the RKEY with the peers that will initiate the access.

Parameters

in context Application context which was used to allocate/map the memory.

in memh Handle to the memory region.

out rkey_buffer←↩

_p
Memory buffer allocated by the library. The buffer contains the packed RKEY.

out size_p Size (in bytes) of the packed RKEY.

Returns

Error code as defined by ucs_status_t

6.1.4.5.13 ucp_rkey_buffer_release()

void ucp_rkey_buffer_release (

void ∗ rkey_buffer)

Deprecated Replaced by ucp_memh_buffer_release().

This routine releases the buffer that was allocated using ucp_rkey_pack().

Warning

• Once memory is released, an access to the memory may cause undefined behavior.

• If the input memory address was not allocated using ucp_rkey_pack() routine, the behavior of this routine
is undefined.

Parameters

in rkey_buffer Buffer to release.

6.1.5 UCP Wake-up routines

Functions

• ucs_status_t ucp_worker_get_efd (ucp_worker_h worker, int ∗fd)

Obtain an event file descriptor for event notification.
• ucs_status_t ucp_worker_wait (ucp_worker_h worker)

Wait for an event of the worker.
• void ucp_worker_wait_mem (ucp_worker_h worker, void ∗address)

Wait for memory update on the address.
• ucs_status_t ucp_worker_arm (ucp_worker_h worker)

Turn on event notification for the next event.
• ucs_status_t ucp_worker_signal (ucp_worker_h worker)

Cause an event of the worker.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

62 Module Documentation

6.1.5.1 Detailed Description

UCP Wake-up routines

6.1.5.2 Function Documentation

6.1.5.2.1 ucp_worker_get_efd()

ucs_status_t ucp_worker_get_efd (

ucp_worker_h worker,

int ∗ fd)

This routine returns a valid file descriptor for polling functions. The file descriptor will get signaled when an event
occurs, as part of the wake-up mechanism. Signaling means a call to poll() or select() with this file descriptor will
return at this point, with this descriptor marked as the reason (or one of the reasons) the function has returned. The
user does not need to release the obtained file descriptor.

The wake-up mechanism exists to allow for the user process to register for notifications on events of the underlying
interfaces, and wait until such occur. This is an alternative to repeated polling for request completion. The goal is to
allow for waiting while consuming minimal resources from the system. This is recommended for cases where traffic
is infrequent, and latency can be traded for lower resource consumption while waiting for it.

There are two alternative ways to use the wakeup mechanism: the first is the file descriptor obtained per worker
(this function) and the second is the ucp_worker_wait function for waiting on the next event internally.

Note

UCP features have to be triggered with UCP_FEATURE_WAKEUP to select proper transport

Parameters

in worker Worker of notified events.
out fd File descriptor.

Returns

Error code as defined by ucs_status_t

Examples

ucp_hello_world.c.

6.1.5.2.2 ucp_worker_wait()

ucs_status_t ucp_worker_wait (

ucp_worker_h worker)

This routine waits (blocking) until an event has happened, as part of the wake-up mechanism.

This function is guaranteed to return only if new communication events occur on the worker. Therefore one must
drain all existing events before waiting on the file descriptor. This can be achieved by calling ucp_worker_progress
repeatedly until it returns 0.

There are two alternative ways to use the wakeup mechanism. The first is by polling on a per-worker file descriptor
obtained from ucp_worker_get_efd. The second is by using this function to perform an internal wait for the next
event associated with the specified worker.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 63

Note

During the blocking call the wake-up mechanism relies on other means of notification and may not progress
some of the requests as it would when calling ucp_worker_progress (which is not invoked in that duration).

UCP features have to be triggered with UCP_FEATURE_WAKEUP to select proper transport

Parameters

in worker Worker to wait for events on.

Returns

Error code as defined by ucs_status_t

Examples

ucp_hello_world.c.

6.1.5.2.3 ucp_worker_wait_mem()

void ucp_worker_wait_mem (

ucp_worker_h worker,

void ∗ address)

This routine waits for a memory update at the local memory address. This is a blocking routine. The routine returns
when the memory address is updated (¨write¨) or an event occurs in the system.

This function is guaranteed to return only if new communication events occur on the worker or address is modified.
Therefore one must drain all existing events before waiting on the file descriptor. This can be achieved by calling
ucp_worker_progress repeatedly until it returns 0.

Note

This routine can be used by an application that executes busy-waiting loop checking for a memory update.
Instead of continuous busy-waiting on an address the application can use ucp_worker_wait_mem, which may
suspend execution until the memory is updated. The goal of the routine is to provide an opportunity for energy
savings for architectures that support this functionality.

Parameters

in worker Worker to wait for updates on.

in address Local memory address

6.1.5.2.4 ucp_worker_arm()

ucs_status_t ucp_worker_arm (

ucp_worker_h worker)

This routine needs to be called before waiting on each notification on this worker, so will typically be called once the
processing of the previous event is over, as part of the wake-up mechanism.

The worker must be armed before waiting on an event (must be re-armed after it has been signaled for reuse)
with ucp_worker_arm. The events triggering a signal of the file descriptor from ucp_worker_get_efd depend on the
interfaces used by the worker and defined in the transport layer, and typically represent a request completion or
newly available resources. It can also be triggered by calling ucp_worker_signal .

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

64 Module Documentation

The file descriptor is guaranteed to become signaled only if new communication events occur on the worker.
Therefore one must drain all existing events before waiting on the file descriptor. This can be achieved by call-
ing ucp_worker_progress repeatedly until it returns 0.
void application_initialization() {
// should be called once in application init flow and before
// process_communication() is used

...
status = ucp_worker_get_efd(worker, &fd);
...

}

void process_communication() {
// should be called every time need to wait for some condition such as
// ucp request completion in sleep mode.

for (;;) {
// check for stop condition as long as progress is made
if (check_for_events()) {

break;
} else if (ucp_worker_progress(worker)) {

continue; // some progress happened but condition not met
}

// arm the worker and clean-up fd
status = ucp_worker_arm(worker);
if (UCS_OK == status) {

poll(&fds, nfds, timeout); // wait for events (sleep mode)
} else if (UCS_ERR_BUSY == status) {

continue; // could not arm, need to progress more
} else {

abort();
}

}
}

Note

UCP features have to be triggered with UCP_FEATURE_WAKEUP to select proper transport

Parameters

in worker Worker of notified events.

Returns

UCS_OK The operation completed successfully. File descriptor will be signaled by new events.

UCS_ERR_BUSY There are unprocessed events which prevent the file descriptor from being armed. These
events should be removed by calling ucp_worker_progress(). The operation is not completed. File descriptor
will not be signaled by new events.

Other different error codes in case of issues.

Examples

ucp_hello_world.c.

6.1.5.2.5 ucp_worker_signal()

ucs_status_t ucp_worker_signal (

ucp_worker_h worker)

This routine signals that the event has happened, as part of the wake-up mechanism. This function causes a
blocking call to ucp_worker_wait or waiting on a file descriptor from ucp_worker_get_efd to return, even if no event
from the underlying interfaces has taken place.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 65

Note

It's safe to use this routine from any thread, even if UCX is compiled without multi-threading support and/or
initialized with any value of ucp_params_t::mt_workers_shared and ucp_worker_params_t::thread_mode pa-
rameters

Parameters

in worker Worker to wait for events on.

Returns

Error code as defined by ucs_status_t

6.1.6 UCP Endpoint

Data Structures

• struct ucp_ep_evaluate_perf_param_t

UCP endpoint performance evaluation request attributes. More...

• struct ucp_ep_evaluate_perf_attr_t

UCP endpoint performance evaluation result attributes. More...

• struct ucp_stream_poll_ep

Output parameter of ucp_stream_worker_poll function. More...

• struct ucp_ep_attr

UCP endpoint attributes. More...

• struct ucp_ep_params

Tuning parameters for the UCP endpoint. More...

• struct ucp_transport_entry_t

The ucp_transports_t and ucp_transport_entry_t structures are used when ucp_ep_query is called to return an array
of transport name and device name pairs that are used by an active endpoint. More...

• struct ucp_transports_t

Structure containing an array of transport layers and device names used by an endpoint. More...

Typedefs

• typedef enum ucp_ep_perf_param_field ucp_ep_perf_param_field_t

UCP performance fields and flags.

• typedef enum ucp_ep_perf_attr_field ucp_ep_perf_attr_field_t

UCP performance fields and flags.

• typedef struct ucp_stream_poll_ep ucp_stream_poll_ep_t

Output parameter of ucp_stream_worker_poll function.

• typedef struct ucp_ep_attr ucp_ep_attr_t

UCP endpoint attributes.

• typedef struct ucp_ep ∗ ucp_ep_h

UCP Endpoint.

• typedef struct ucp_conn_request ∗ ucp_conn_request_h

UCP connection request.

• typedef ucs_status_t(∗ ucp_am_callback_t) (void ∗arg, void ∗data, size_t length, ucp_ep_h reply_ep, un-
signed flags)

Callback to process incoming Active Message.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

66 Module Documentation

• typedef ucs_status_t(∗ ucp_am_recv_callback_t) (void ∗arg, const void ∗header, size_t header_length, void
∗data, size_t length, const ucp_am_recv_param_t ∗param)

Callback to process incoming Active Message sent by ucp_am_send_nbx routine.

• typedef struct ucp_ep_params ucp_ep_params_t

Tuning parameters for the UCP endpoint.

Enumerations

• enum ucp_ep_params_field {
UCP_EP_PARAM_FIELD_REMOTE_ADDRESS = UCS_BIT(0) , UCP_EP_PARAM_FIELD_ERR_HANDLING_MODE
= UCS_BIT(1) , UCP_EP_PARAM_FIELD_ERR_HANDLER = UCS_BIT(2) , UCP_EP_PARAM_FIELD_USER_DATA
= UCS_BIT(3) ,
UCP_EP_PARAM_FIELD_SOCK_ADDR = UCS_BIT(4) , UCP_EP_PARAM_FIELD_FLAGS = UCS_BIT(5)
, UCP_EP_PARAM_FIELD_CONN_REQUEST = UCS_BIT(6) , UCP_EP_PARAM_FIELD_NAME = UCS_←↩

BIT(7) ,
UCP_EP_PARAM_FIELD_LOCAL_SOCK_ADDR = UCS_BIT(8) }

UCP endpoint parameters field mask.

• enum ucp_ep_params_flags_field { UCP_EP_PARAMS_FLAGS_CLIENT_SERVER = UCS_BIT(0) ,
UCP_EP_PARAMS_FLAGS_NO_LOOPBACK = UCS_BIT(1) , UCP_EP_PARAMS_FLAGS_SEND_CLIENT_ID
= UCS_BIT(2) }

UCP endpoint parameters flags.

• enum ucp_ep_close_flags_t { UCP_EP_CLOSE_FLAG_FORCE = UCS_BIT(0) }

Close UCP endpoint modes.

• enum ucp_ep_perf_param_field { UCP_EP_PERF_PARAM_FIELD_MESSAGE_SIZE = UCS_BIT(0) }

UCP performance fields and flags.

• enum ucp_ep_perf_attr_field { UCP_EP_PERF_ATTR_FIELD_ESTIMATED_TIME = UCS_BIT(0) }

UCP performance fields and flags.

• enum ucp_cb_param_flags { UCP_CB_PARAM_FLAG_DATA = UCS_BIT(0) }

Descriptor flags for Active Message callback.

• enum ucp_ep_attr_field {
UCP_EP_ATTR_FIELD_NAME = UCS_BIT(0) , UCP_EP_ATTR_FIELD_LOCAL_SOCKADDR = UCS_←↩

BIT(1) , UCP_EP_ATTR_FIELD_REMOTE_SOCKADDR = UCS_BIT(2) , UCP_EP_ATTR_FIELD_TRANSPORTS
= UCS_BIT(3) ,
UCP_EP_ATTR_FIELD_USER_DATA = UCS_BIT(4) }

UCP endpoint attributes field mask.

• enum ucp_ep_close_mode { UCP_EP_CLOSE_MODE_FORCE = 0 , UCP_EP_CLOSE_MODE_FLUSH = 1
}

Close UCP endpoint modes.

• enum ucp_err_handling_mode_t { UCP_ERR_HANDLING_MODE_NONE , UCP_ERR_HANDLING_MODE_PEER
}

Error handling mode for the UCP endpoint.

Functions

• ucs_status_t ucp_ep_create (ucp_worker_h worker, const ucp_ep_params_t ∗params, ucp_ep_h ∗ep_p)

Create and connect an endpoint.

• ucs_status_ptr_t ucp_ep_close_nbx (ucp_ep_h ep, const ucp_request_param_t ∗param)

Non-blocking endpoint closure.

• void ucp_ep_print_info (ucp_ep_h ep, FILE ∗stream)

Print endpoint information.

• ucs_status_ptr_t ucp_ep_flush_nbx (ucp_ep_h ep, const ucp_request_param_t ∗param)

Non-blocking flush of outstanding AMO and RMA operations on the endpoint.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 67

• ucs_status_t ucp_ep_evaluate_perf (ucp_ep_h ep, const ucp_ep_evaluate_perf_param_t ∗param,
ucp_ep_evaluate_perf_attr_t ∗attr)

Estimate performance characteristics of a specific endpoint.

• ucs_status_t ucp_ep_query (ucp_ep_h ep, ucp_ep_attr_t ∗attr)

Get attributes of a given endpoint.

• void ucp_request_release (void ∗request)
• void ucp_ep_destroy (ucp_ep_h ep)
• ucs_status_ptr_t ucp_disconnect_nb (ucp_ep_h ep)
• ucs_status_t ucp_request_test (void ∗request, ucp_tag_recv_info_t ∗info)
• ucs_status_t ucp_ep_flush (ucp_ep_h ep)
• ucs_status_ptr_t ucp_ep_modify_nb (ucp_ep_h ep, const ucp_ep_params_t ∗params)

Modify endpoint parameters.

• ucs_status_ptr_t ucp_ep_close_nb (ucp_ep_h ep, unsigned mode)

Non-blocking endpoint closure.

• ucs_status_ptr_t ucp_ep_flush_nb (ucp_ep_h ep, unsigned flags, ucp_send_callback_t cb)

Non-blocking flush of outstanding AMO and RMA operations on the endpoint.

6.1.6.1 Detailed Description

UCP Endpoint routines

6.1.6.2 Data Structure Documentation

6.1.6.2.1 struct ucp_ep_evaluate_perf_param_t

The structure defines the attributes which characterize the request for performance estimation of a particular end-
point.

Data Fields

uint64_t field_mask Mask of valid fields in this structure, using bits from ucp_ep_perf_param_field_t.
Fields not specified in this mask will be ignored. Provides ABI compatibility with
respect to adding new fields.

size_t message_size Message size to use for determining performance. This field must be initialized by
the caller.

6.1.6.2.2 struct ucp_ep_evaluate_perf_attr_t

The structure defines the attributes which characterize the result of performance estimation of a particular endpoint.

Data Fields

uint64_t field_mask Mask of valid fields in this structure, using bits from ucp_ep_perf_attr_field_t.
Fields not specified in this mask will be ignored. Provides ABI compatibility with
respect to adding new fields.

double estimated_time Estimated time (in seconds) required to send a message of a given size on this
endpoint. This field is set by the ucp_ep_evaluate_perf function.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

68 Module Documentation

6.1.6.2.3 struct ucp_stream_poll_ep

The structure defines the endpoint and its user data.

Data Fields

ucp_ep_h ep Endpoint handle.

void ∗ user_data User data associated with an endpoint passed in ucp_ep_params_t::user_data.

unsigned flags Reserved for future use.

uint8_t reserved[16] Reserved for future use.

6.1.6.2.4 struct ucp_ep_attr

The structure defines the attributes that characterize the particular endpoint.

Data Fields

uint64_t field_mask Mask of valid fields in this structure, using
bits from ucp_ep_attr_field. Fields not
specified in this mask will be ignored.
Provides ABI compatibility with respect to
adding new fields.

char name[UCP_ENTITY_NAME_MAX] Endpoint name. Tracing and analysis tools
can identify the endpoint using this name.

struct sockaddr_storage local_sockaddr Local socket address for this endpoint. Valid
only for endpoints created by connecting to a
socket address. If this field is specified for an
endpoint not connected to a socket address,
UCS_ERR_NOT_CONNECTED will be
returned.

struct sockaddr_storage remote_sockaddr Remote socket address this endpoint is
connected to. Valid only for endpoints
created by connecting to a socket address. If
this field is specified for an endpoint not
connected to a socket address,
UCS_ERR_NOT_CONNECTED will be
returned.

ucp_transports_t transports Structure defining an array containing
transport and device names used by this
endpoint. The caller is responsible for
allocation and deallocation of this array.

void ∗ user_data User data associated with an endpoint
passed in ucp_ep_params_t::user_data.

6.1.6.2.5 struct ucp_ep_params

The structure defines the parameters that are used for the UCP endpoint tuning during the UCP ep creation.

Examples

ucp_client_server.c, and ucp_hello_world.c.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 69

Data Fields

uint64_t field_mask Mask of valid fields in this structure, using bits from
ucp_ep_params_field. Fields not specified in this mask will be
ignored. Provides ABI compatibility with respect to adding new
fields.

const ucp_address_t ∗ address Destination address; this field should be set along with its
corresponding bit in the field_mask -
UCP_EP_PARAM_FIELD_REMOTE_ADDRESS and must be
obtained using ucp_worker_get_address.

ucp_err_handling_mode_t err_mode Desired error handling mode, optional parameter. Default value
is UCP_ERR_HANDLING_MODE_NONE.

ucp_err_handler_t err_handler Handler to process transport level failure.

void ∗ user_data User data associated with an endpoint. See
ucp_stream_poll_ep_t and ucp_err_handler_t

unsigned flags Endpoint flags from ucp_ep_params_flags_field. This value is
optional. If it's not set (along with its corresponding bit in the
field_mask - UCP_EP_PARAM_FIELD_FLAGS), the
ucp_ep_create() routine will consider the flags as set to zero.

ucs_sock_addr_t sockaddr Destination address in the form of a sockaddr; this field should
be set along with its corresponding bit in the field_mask -
UCP_EP_PARAM_FIELD_SOCK_ADDR and must be
obtained from the user, it means that this type of the endpoint
creation is possible only on client side in client-server
connection establishment flow.

ucp_conn_request_h conn_request Connection request from client; this field should be set along
with its corresponding bit in the field_mask -
UCP_EP_PARAM_FIELD_CONN_REQUEST and must be
obtained from ucp_listener_conn_callback_t, it means that this
type of the endpoint creation is possible only on server side in
client-server connection establishment flow.

const char ∗ name Endpoint name. Tracing and analysis tools can identify the
endpoint using this name. To retrieve the endpoint's name, use
ucp_ep_query, as the name you supply may be changed by
UCX under some circumstances, e.g. a name conflict. This
field is only assigned if you set
UCP_EP_PARAM_FIELD_NAME in the field mask. If not, then
a default unique name will be created for you.

ucs_sock_addr_t local_sockaddr The sockaddr to bind locally. Specifies the associated network
device to bind locally to establish new connections. To retrieve
the endpoint's local_sockaddr, use ucp_ep_query. This setting
is optional. To enable it, the corresponding -
UCP_EP_PARAM_FIELD_LOCAL_SOCK_ADDR bit in the
field mask must be set.

6.1.6.2.6 struct ucp_transport_entry_t

The ucp_transport_t structure specifies the characteristics of the ucp_transport_entry_t array.

The caller is responsible for the allocation and de-allocation of the ucp_transport_entry_t array.

Example: Implementation of a function to query the set of transport and device name pairs used by the specified
endpoint.
int query_transports(ucp_ep_h ep)
{

ucs_status_t status;
ucp_transport_entry_t *transport_entries;

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

70 Module Documentation

ucp_ep_attr_t ep_attrs;

ep_attrs.field_mask = UCP_EP_ATTR_FIELD_TRANSPORTS;
ep_attrs.transports.entries = (ucp_transport_entry_t *)

malloc(10 * sizeof(ucp_transport_entry_t));
ep_attrs.transports.num_entries = 10;
ep_attrs.transports.entry_size = sizeof(ucp_transport_entry_t);
status = ucp_ep_query(ep, &ep_attrs);
if (status == UCS_OK) {

// ep_attrs.transports.num_entries = number of returned entries
// ... process transport info ...

}
}

A transport name and device name pair used by this endpoint. The caller is responsible for the allocation and
deallocation of an array of these structures large enough to contain the desired number of transport and device
name pairs.

Any new fields must be added to the end of this structure.

Data Fields

const char ∗ transport_name The name of a transport layer used by this endpoint. This '\0'-terminated
string is valid until the endpoint is closed using a ucp_ep_close_nbx call.

const char ∗ device_name The name of the device used with this transport by this endpoint. This
'\0'-terminated string is valid until the endpoint is closed using a
ucp_ep_close_nbx call.

6.1.6.2.7 struct ucp_transports_t

The caller is responsible for allocation and deallocation of this structure.

Data Fields

ucp_transport_entry_t ∗ entries Pointer to array of transport/device name pairs used by this
endpoint. The caller is responsible for the allocation and
deallocation of this array.

unsigned num_entries Number of transport/device name pairs. The caller must set this to
the maximum number of pairs the structure can contain. On return,
this is set to the actual number of transport and device name pairs
used by the endpoint.

size_t entry_size Size of a single ucp_transport_entry_t object. The caller sets this to
the size of the ucp_transport_entry_t they are using. UCP code
must not set any fields in the ucp_transport_entry_t structure
beyond this size.

6.1.6.3 Typedef Documentation

6.1.6.3.1 ucp_ep_perf_param_field_t

typedef enum ucp_ep_perf_param_field ucp_ep_perf_param_field_t

The enumeration allows specifying which fields in ucp_ep_evaluate_perf_param_t are present and operation flags
are used. It is used to enable backward compatibility support.

6.1.6.3.2 ucp_ep_perf_attr_field_t

typedef enum ucp_ep_perf_attr_field ucp_ep_perf_attr_field_t

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 71

The enumeration allows specifying which fields in ucp_ep_evaluate_perf_attr_t are present and operation flags are
used. It is used to enable backward compatibility support.

6.1.6.3.3 ucp_stream_poll_ep_t

typedef struct ucp_stream_poll_ep ucp_stream_poll_ep_t

The structure defines the endpoint and its user data.

6.1.6.3.4 ucp_ep_attr_t

typedef struct ucp_ep_attr ucp_ep_attr_t

The structure defines the attributes that characterize the particular endpoint.

6.1.6.3.5 ucp_ep_h

typedef struct ucp_ep∗ ucp_ep_h

The endpoint handle is an opaque object that is used to address a remote worker. It typically provides a description
of source, destination, or both. All UCP communication routines address a destination with the endpoint handle.
The endpoint handle is associated with only one UCP context. UCP provides the endpoint create routine to create
the endpoint handle and the destroy routine to destroy the endpoint handle.

6.1.6.3.6 ucp_conn_request_h

typedef struct ucp_conn_request∗ ucp_conn_request_h

A server-side handle to incoming connection request. Can be used to create an endpoint which connects back to
the client.

6.1.6.3.7 ucp_am_callback_t

typedef ucs_status_t(∗ ucp_am_callback_t) (void ∗arg, void ∗data, size_t length, ucp_ep_h reply←↩

_ep, unsigned flags)

When the callback is called, flags indicates how data should be handled.

Parameters

in arg User-defined argument.

in data Points to the received data. This data may persist after the callback returns and needs to be
freed with ucp_am_data_release.

in length Length of data.

in reply_ep If the Active Message is sent with the UCP_AM_SEND_FLAG_REPLY flag, the sending ep
will be passed in. If not, NULL will be passed.

in flags If this flag is set to UCP_CB_PARAM_FLAG_DATA, the callback can return
UCS_INPROGRESS and data will persist after the callback returns.

Returns

UCS_OK data will not persist after the callback returns.

UCS_INPROGRESS Can only be returned if flags is set to UCP_CB_PARAM_FLAG_DATA. If UCP_←↩

INPROGRESS is returned, data will persist after the callback has returned. To free the memory, a pointer
to the data must be passed into ucp_am_data_release.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

72 Module Documentation

Note

This callback should be set and released by ucp_worker_set_am_handler function.

6.1.6.3.8 ucp_am_recv_callback_t

typedef ucs_status_t(∗ ucp_am_recv_callback_t) (void ∗arg, const void ∗header, size_t header_←↩

length, void ∗data, size_t length, const ucp_am_recv_param_t ∗param)

The callback is always called from the progress context, therefore calling ucp_worker_progress() is not allowed. It is
recommended to define callbacks with relatively short execution time to avoid blocking of communication progress.

Parameters

in arg User-defined argument.

in header User defined active message header. If header_length is 0, this value is undefined
and must not be accessed.

in header_length Active message header length in bytes.

in data Points to the received data if UCP_AM_RECV_ATTR_FLAG_RNDV flag is not set in
ucp_am_recv_param_t::recv_attr. Otherwise it points to the internal UCP descriptor
which can further be used for initiating data receive by using ucp_am_recv_data_nbx
routine.

in length Length of data. If UCP_AM_RECV_ATTR_FLAG_RNDV flag is set in
ucp_am_recv_param_t::recv_attr, it indicates the required receive buffer size for
initiating rendezvous protocol.

in param Data receive parameters.

Returns

UCS_OK data will not persist after the callback returns. If UCP_AM_RECV_ATTR_FLAG_RNDV flag is set in
param->recv_attr and ucp_am_recv_data_nbx was not called for this data, the data descriptor will be dropped
and the corresponding ucp_am_send_nbx call will complete with UCS_OK status.

UCS_INPROGRESS Can only be returned if param->recv_attr flags contains UCP_AM_RECV_ATTR_←↩

FLAG_DATA or UCP_AM_RECV_ATTR_FLAG_RNDV. The data will persist after the callback has returned.
To free the memory, a pointer to the data must be passed into ucp_am_data_release or data receive is initiated
by ucp_am_recv_data_nbx.

otherwise Can only be returned if param->recv_attr contains UCP_AM_RECV_ATTR_FLAG_RNDV. In this
case data descriptor data will be dropped and the corresponding ucp_am_send_nbx call on the sender side
will complete with the status returned from the callback.

Note

This callback should be set and released by ucp_worker_set_am_recv_handler function.

6.1.6.3.9 ucp_ep_params_t

typedef struct ucp_ep_params ucp_ep_params_t

The structure defines the parameters that are used for the UCP endpoint tuning during the UCP ep creation.

6.1.6.4 Enumeration Type Documentation

6.1.6.4.1 ucp_ep_params_field

enum ucp_ep_params_field

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 73

The enumeration allows specifying which fields in ucp_ep_params_t are present. It is used to enable backward
compatibility support.

Enumerator

UCP_EP_PARAM_FIELD_REMOTE_ADDRESS Address of remote peer

UCP_EP_PARAM_FIELD_ERR_HANDLING_MODE Error handling mode. ucp_err_handling_mode_t

UCP_EP_PARAM_FIELD_ERR_HANDLER Handler to process transport level errors

UCP_EP_PARAM_FIELD_USER_DATA User data pointer

UCP_EP_PARAM_FIELD_SOCK_ADDR Socket address field
UCP_EP_PARAM_FIELD_FLAGS Endpoint flags Connection request field

UCP_EP_PARAM_FIELD_CONN_REQUEST
UCP_EP_PARAM_FIELD_NAME Endpoint name

UCP_EP_PARAM_FIELD_LOCAL_SOCK_ADDR Local socket Address

6.1.6.4.2 ucp_ep_params_flags_field

enum ucp_ep_params_flags_field

The enumeration list describes the endpoint's parameters flags supported by ucp_ep_create() function.

Enumerator

UCP_EP_PARAMS_FLAGS_CLIENT_SERVER Using a client-server connection establishment
mechanism. ucs_sock_addr_t sockaddr field must be
provided and contain the address of the remote peer

UCP_EP_PARAMS_FLAGS_NO_LOOPBACK Avoid connecting the endpoint to itself when connecting
the endpoint to the same worker it was created on. Affects
protocols which send to a particular remote endpoint, for
example stream

UCP_EP_PARAMS_FLAGS_SEND_CLIENT_ID Send client id when connecting to remote socket address
as part of the connection request payload. On the remote
side value can be obtained from ucp_conn_request_h
using ucp_conn_request_query

6.1.6.4.3 ucp_ep_close_flags_t

enum ucp_ep_close_flags_t

The enumeration is used to specify the behavior of ucp_ep_close_nbx.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

74 Module Documentation

Enumerator

UCP_EP_CLOSE_FLAG_FORCE ucp_ep_close_nbx releases the endpoint without any confirmation from
the peer. All outstanding requests will be completed with
UCS_ERR_CANCELED error.

Note

This mode may cause transport level errors on remote side, so it
requires set UCP_ERR_HANDLING_MODE_PEER for all
endpoints created on both (local and remote) sides to avoid
undefined behavior. If this flag is not set then ucp_ep_close_nbx
schedules flushes on all outstanding operations.

this flag is incompatible with
UCP_OP_ATTR_FLAG_NO_IMM_CMPL, since it forces immediate
completion.

6.1.6.4.4 ucp_ep_perf_param_field

enum ucp_ep_perf_param_field

The enumeration allows specifying which fields in ucp_ep_evaluate_perf_param_t are present and operation flags
are used. It is used to enable backward compatibility support.

Enumerator

UCP_EP_PERF_PARAM_FIELD_MESSAGE_SIZE Enables ucp_ep_evaluate_perf_param_t::message_size

6.1.6.4.5 ucp_ep_perf_attr_field

enum ucp_ep_perf_attr_field

The enumeration allows specifying which fields in ucp_ep_evaluate_perf_attr_t are present and operation flags are
used. It is used to enable backward compatibility support.

Enumerator

UCP_EP_PERF_ATTR_FIELD_ESTIMATED_TIME Enables ucp_ep_evaluate_perf_attr_t::estimated_time

6.1.6.4.6 ucp_cb_param_flags

enum ucp_cb_param_flags

In a callback, if flags is set to UCP_CB_PARAM_FLAG_DATA in a callback then data was allocated, so if
UCS_INPROGRESS is returned from the callback, the data parameter will persist and the user has to call
ucp_am_data_release when data is no longer needed.

Enumerator

UCP_CB_PARAM_FLAG_DATA

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 75

6.1.6.4.7 ucp_ep_attr_field

enum ucp_ep_attr_field

The enumeration allows specifying which fields in ucp_ep_attr_t are present. It is used to enable backward compat-
ibility support.

Enumerator

UCP_EP_ATTR_FIELD_NAME UCP endpoint name

UCP_EP_ATTR_FIELD_LOCAL_SOCKADDR Sockaddr used by the endpoint

UCP_EP_ATTR_FIELD_REMOTE_SOCKADDR Sockaddr the endpoint is connected to

UCP_EP_ATTR_FIELD_TRANSPORTS Transport and device used by endpoint

UCP_EP_ATTR_FIELD_USER_DATA User data associated with the endpoint

6.1.6.4.8 ucp_ep_close_mode

enum ucp_ep_close_mode

Deprecated Use ucp_ep_close_nbx and ucp_ep_close_flags_t instead.

The enumeration is used to specify the behavior of ucp_ep_close_nb.

Enumerator

UCP_EP_CLOSE_MODE_FORCE ucp_ep_close_nb releases the endpoint without any confirmation from
the peer. All outstanding requests will be completed with
UCS_ERR_CANCELED error.

Note

This mode may cause transport level errors on remote side, so it
requires set UCP_ERR_HANDLING_MODE_PEER for all
endpoints created on both (local and remote) sides to avoid
undefined behavior.

UCP_EP_CLOSE_MODE_FLUSH ucp_ep_close_nb schedules flushes on all outstanding operations.

6.1.6.4.9 ucp_err_handling_mode_t

enum ucp_err_handling_mode_t

Specifies error handling mode for the UCP endpoint.

Enumerator

UCP_ERR_HANDLING_MODE_NONE No guarantees about error reporting, imposes minimal overhead
from a performance perspective.

Note

In this mode, any error reporting will not generate calls to
ucp_ep_params_t::err_handler.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

76 Module Documentation

Enumerator

UCP_ERR_HANDLING_MODE_PEER Guarantees that send requests are always completed (successfully
or error) even in case of remote failure, disables protocols and APIs
which may cause a hang or undefined behavior in case of peer
failure, may affect performance and memory footprint

6.1.6.5 Function Documentation

6.1.6.5.1 ucp_ep_create()

ucs_status_t ucp_ep_create (

ucp_worker_h worker,

const ucp_ep_params_t ∗ params,

ucp_ep_h ∗ ep_p)

This routine creates and connects an endpoint on a local worker for a destination address that identifies the remote
worker. This function is non-blocking, and communications may begin immediately after it returns. If the connection
process is not completed, communications may be delayed. The created endpoint is associated with one and only
one worker.

Parameters

in worker Handle to the worker; the endpoint is associated with the worker.

in params User defined ucp_ep_params_t configurations for the UCP endpoint.

out ep_p A handle to the created endpoint.

Returns

Error code as defined by ucs_status_t

Note

One of the following fields has to be specified:

• ucp_ep_params_t::address

• ucp_ep_params_t::sockaddr

• ucp_ep_params_t::conn_request

By default, ucp_ep_create() will connect an endpoint to itself if the endpoint is destined to the same worker
on which it was created, i.e. params.address belongs to worker. This behavior can be changed by passing
the UCP_EP_PARAMS_FLAGS_NO_LOOPBACK flag in params.flags. In that case, the endpoint will be
connected to the next endpoint created in the same way on the same worker.

Examples

ucp_client_server.c, and ucp_hello_world.c.

6.1.6.5.2 ucp_ep_close_nbx()

ucs_status_ptr_t ucp_ep_close_nbx (

ucp_ep_h ep,

const ucp_request_param_t ∗ param)

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 77

Parameters

in ep Handle to the endpoint to close.

in param Operation parameters, see ucp_request_param_t. This operation supports specific flags,
which can be passed in param by ucp_request_param_t::flags. The exact set of flags is
defined by ucp_ep_close_flags_t.

Returns

NULL - The endpoint is closed successfully.

UCS_PTR_IS_ERR(_ptr) - The closure failed and an error code indicates the transport level status. However,
resources are released and the endpoint can no longer be used.

otherwise - The closure process is started, and can be completed at any point in time. A request handle is
returned to the application in order to track progress of the endpoint closure.

6.1.6.5.3 ucp_ep_print_info()

void ucp_ep_print_info (

ucp_ep_h ep,

FILE ∗ stream)

This routine prints information about the endpoint transport methods, their thresholds, and other useful information
associated with the endpoint.

Parameters

in ep Endpoint object whose configuration to print.

in stream Output stream to print the information to.

6.1.6.5.4 ucp_ep_flush_nbx()

ucs_status_ptr_t ucp_ep_flush_nbx (

ucp_ep_h ep,

const ucp_request_param_t ∗ param)

This routine flushes all outstanding AMO and RMA communications on the endpoint. All the AMO and RMA oper-
ations issued on the ep prior to this call are completed both at the origin and at the target endpoint when this call
returns.

Parameters

in ep UCP endpoint.

in param Operation parameters, see ucp_request_param_t.

Returns

NULL - The flush operation was completed immediately.

UCS_PTR_IS_ERR(_ptr) - The flush operation failed.

otherwise - Flush operation was scheduled and can be completed in any point in time. The request handle is
returned to the application in order to track progress.

The following example demonstrates how blocking flush can be implemented using non-blocking flush:

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

78 Module Documentation

ucs_status_t blocking_ep_flush(ucp_ep_h ep, ucp_worker_h worker)
{

ucp_request_param_t param;
void *request;

param.op_attr_mask = 0;
request = ucp_ep_flush_nbx(ep, ¶m);
if (request == NULL) {

return UCS_OK;
} else if (UCS_PTR_IS_ERR(request)) {

return UCS_PTR_STATUS(request);
} else {

ucs_status_t status;
do {

ucp_worker_progress(worker);
status = ucp_request_check_status(request);

} while (status == UCS_INPROGRESS);
ucp_request_free(request);
return status;

}
}

Examples

ucp_hello_world.c.

6.1.6.5.5 ucp_ep_evaluate_perf()

ucs_status_t ucp_ep_evaluate_perf (

ucp_ep_h ep,

const ucp_ep_evaluate_perf_param_t ∗ param,

ucp_ep_evaluate_perf_attr_t ∗ attr)

This routine fetches information about the endpoint.

Parameters

in ep Endpoint to query.

in param Filled by the user with request params.

out attr Filled with performance estimation of the given operation on the endpoint.

Returns

Error code as defined by ucs_status_t

6.1.6.5.6 ucp_ep_query()

ucs_status_t ucp_ep_query (

ucp_ep_h ep,

ucp_ep_attr_t ∗ attr)

This routine fetches information about the endpoint.

Parameters

in ep Endpoint object to query.

out attr Filled with attributes of the endpoint.

Returns

Error code as defined by ucs_status_t

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 79

6.1.6.5.7 ucp_request_release()

void ucp_request_release (

void ∗ request)

Deprecated Replaced by ucp_request_free.

6.1.6.5.8 ucp_ep_destroy()

void ucp_ep_destroy (

ucp_ep_h ep)

Deprecated Replaced by ucp_ep_close_nb.

6.1.6.5.9 ucp_disconnect_nb()

ucs_status_ptr_t ucp_disconnect_nb (

ucp_ep_h ep)

Deprecated Replaced by ucp_ep_close_nb.

6.1.6.5.10 ucp_request_test()

ucs_status_t ucp_request_test (

void ∗ request,

ucp_tag_recv_info_t ∗ info)

Deprecated Replaced by ucp_tag_recv_request_test and ucp_request_check_status depends on use case.

Note

Please use ucp_request_check_status for cases that only need to check the completion status of an outstand-
ing request. ucp_request_check_status can be used for any type of request. ucp_tag_recv_request_test
should only be used for requests returned by ucp_tag_recv_nb (or request allocated by user for
ucp_tag_recv_nbr) for which additional information (returned via the info pointer) is needed.

6.1.6.5.11 ucp_ep_flush()

ucs_status_t ucp_ep_flush (

ucp_ep_h ep)

Deprecated Replaced by ucp_ep_flush_nb.

6.1.6.5.12 ucp_ep_modify_nb()

ucs_status_ptr_t ucp_ep_modify_nb (

ucp_ep_h ep,

const ucp_ep_params_t ∗ params)

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

80 Module Documentation

Deprecated Use ucp_listener_conn_handler_t instead of ucp_listener_accept_handler_t, if you have other
use case please submit an issue on https://github.com/openucx/ucx or report to
ucx-group@elist.ornl.gov

This routine modifies endpoint created by ucp_ep_create or ucp_listener_accept_callback_t. For example, this API
can be used to setup custom parameters like ucp_ep_params_t::user_data or ucp_ep_params_t::err_handler to
endpoint created by ucp_listener_accept_callback_t.

Parameters

in ep A handle to the endpoint.

in params User defined ucp_ep_params_t configurations for the UCP endpoint.

Returns

NULL - The endpoint is modified successfully.

UCS_PTR_IS_ERR(_ptr) - The reconfiguration failed and an error code indicates the status. However, the
endpoint is not modified and can be used further.

otherwise - The reconfiguration process is started, and can be completed at any point in time. A request
handle is returned to the application in order to track progress of the endpoint modification. The application is
responsible for releasing the handle using the ucp_request_free routine.

Note

See the documentation of ucp_ep_params_t for details, only some of the parameters can be modified.

6.1.6.5.13 ucp_ep_close_nb()

ucs_status_ptr_t ucp_ep_close_nb (

ucp_ep_h ep,

unsigned mode)

Deprecated Use ucp_ep_close_nbx instead.

This routine releases the endpoint. The endpoint closure process depends on the selected mode.

Parameters

in ep Handle to the endpoint to close.

in mode One from ucp_ep_close_mode value.

Returns

UCS_OK - The endpoint is closed successfully.

UCS_PTR_IS_ERR(_ptr) - The closure failed and an error code indicates the transport level status. However,
resources are released and the endpoint can no longer be used.

otherwise - The closure process is started, and can be completed at any point in time. A request handle is
returned to the application in order to track progress of the endpoint closure. The application is responsible
for releasing the handle using the ucp_request_free routine.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

https://github.com/openucx/ucx
mailto:ucx-group@elist.ornl.gov
mailto:ucx-group@elist.ornl.gov

6.1 Unified Communication Protocol (UCP) API 81

Note

ucp_ep_close_nb replaces deprecated ucp_disconnect_nb and ucp_ep_destroy

6.1.6.5.14 ucp_ep_flush_nb()

ucs_status_ptr_t ucp_ep_flush_nb (

ucp_ep_h ep,

unsigned flags,

ucp_send_callback_t cb)

Deprecated Use ucp_ep_flush_nbx instead.

This routine flushes all outstanding AMO and RMA communications on the endpoint. All the AMO and RMA oper-
ations issued on the ep prior to this call are completed both at the origin and at the target endpoint when this call
returns.

Parameters

in ep UCP endpoint.

in flags Flags for flush operation. Reserved for future use.

in cb Callback which will be called when the flush operation completes.

Returns

NULL - The flush operation was completed immediately.

UCS_PTR_IS_ERR(_ptr) - The flush operation failed.

otherwise - Flush operation was scheduled and can be completed in any point in time. The request handle is
returned to the application in order to track progress. The application is responsible for releasing the handle
using ucp_request_free() routine.

6.1.7 UCP Communication routines

Data Structures

• struct ucp_request_attr_t

Attributes of a particular request. More...

• struct ucp_err_handler

UCP endpoint error handling context. More...

Typedefs

• typedef uint64_t ucp_tag_t

UCP Tag Identifier.

• typedef struct ucp_recv_desc ∗ ucp_tag_message_h

UCP Message descriptor.

• typedef uint64_t ucp_datatype_t

UCP Datatype Identifier.

• typedef void(∗ ucp_send_callback_t) (void ∗request, ucs_status_t status)

Completion callback for non-blocking sends.

• typedef void(∗ ucp_send_nbx_callback_t) (void ∗request, ucs_status_t status, void ∗user_data)

Completion callback for non-blocking sends.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

82 Module Documentation

• typedef void(∗ ucp_err_handler_cb_t) (void ∗arg, ucp_ep_h ep, ucs_status_t status)

Callback to process peer failure.

• typedef struct ucp_err_handler ucp_err_handler_t

UCP endpoint error handling context.

• typedef void(∗ ucp_stream_recv_callback_t) (void ∗request, ucs_status_t status, size_t length)

Completion callback for non-blocking stream oriented receives.

• typedef void(∗ ucp_stream_recv_nbx_callback_t) (void ∗request, ucs_status_t status, size_t length, void
∗user_data)

Completion callback for non-blocking stream receives ucp_stream_recv_nbx call.

• typedef void(∗ ucp_tag_recv_callback_t) (void ∗request, ucs_status_t status, ucp_tag_recv_info_t ∗info)

Completion callback for non-blocking tag receives.

• typedef void(∗ ucp_tag_recv_nbx_callback_t) (void ∗request, ucs_status_t status, const ucp_tag_recv_info_t
∗tag_info, void ∗user_data)

Completion callback for non-blocking tag receives ucp_tag_recv_nbx call.

• typedef void(∗ ucp_am_recv_data_nbx_callback_t) (void ∗request, ucs_status_t status, size_t length, void
∗user_data)

Completion callback for non-blocking Active Message receives.

Enumerations

• enum ucp_atomic_op_t {
UCP_ATOMIC_OP_ADD , UCP_ATOMIC_OP_SWAP , UCP_ATOMIC_OP_CSWAP , UCP_ATOMIC_OP_AND
,
UCP_ATOMIC_OP_OR , UCP_ATOMIC_OP_XOR , UCP_ATOMIC_OP_LAST }

Atomic operation requested for ucp_atomic_op_nbx.

• enum ucp_stream_recv_flags_t { UCP_STREAM_RECV_FLAG_WAITALL = UCS_BIT(0) }

Flags to define behavior of ucp_stream_recv_nb function.

• enum ucp_op_attr_t {
UCP_OP_ATTR_FIELD_REQUEST = UCS_BIT(0) , UCP_OP_ATTR_FIELD_CALLBACK = UCS_BIT(1) ,
UCP_OP_ATTR_FIELD_USER_DATA = UCS_BIT(2) , UCP_OP_ATTR_FIELD_DATATYPE = UCS_BIT(3) ,
UCP_OP_ATTR_FIELD_FLAGS = UCS_BIT(4) , UCP_OP_ATTR_FIELD_REPLY_BUFFER = UCS_BIT(5) ,
UCP_OP_ATTR_FIELD_MEMORY_TYPE = UCS_BIT(6) , UCP_OP_ATTR_FIELD_RECV_INFO = UCS_←↩

BIT(7) ,
UCP_OP_ATTR_FIELD_MEMH = UCS_BIT(8) , UCP_OP_ATTR_FLAG_NO_IMM_CMPL = UCS_BIT(16)
, UCP_OP_ATTR_FLAG_FAST_CMPL = UCS_BIT(17) , UCP_OP_ATTR_FLAG_FORCE_IMM_CMPL =
UCS_BIT(18) ,
UCP_OP_ATTR_FLAG_MULTI_SEND = UCS_BIT(19) }

UCP operation fields and flags.

• enum ucp_req_attr_field { UCP_REQUEST_ATTR_FIELD_INFO_STRING = UCS_BIT(0) , UCP_REQUEST_ATTR_FIELD_INFO_STRING_SIZE
= UCS_BIT(1) , UCP_REQUEST_ATTR_FIELD_STATUS = UCS_BIT(2) , UCP_REQUEST_ATTR_FIELD_MEM_TYPE
= UCS_BIT(3) }

UCP request query attributes.

• enum ucp_am_recv_attr_t { UCP_AM_RECV_ATTR_FIELD_REPLY_EP = UCS_BIT(0) , UCP_AM_RECV_ATTR_FLAG_DATA
= UCS_BIT(16) , UCP_AM_RECV_ATTR_FLAG_RNDV = UCS_BIT(17) }

UCP AM receive data parameter fields and flags.

• enum ucp_am_handler_param_field { UCP_AM_HANDLER_PARAM_FIELD_ID = UCS_BIT(0) , UCP_AM_HANDLER_PARAM_FIELD_FLAGS
= UCS_BIT(1) , UCP_AM_HANDLER_PARAM_FIELD_CB = UCS_BIT(2) , UCP_AM_HANDLER_PARAM_FIELD_ARG
= UCS_BIT(3) }

UCP AM receive data parameters fields and flags.

• enum ucp_atomic_post_op_t {
UCP_ATOMIC_POST_OP_ADD , UCP_ATOMIC_POST_OP_AND , UCP_ATOMIC_POST_OP_OR ,
UCP_ATOMIC_POST_OP_XOR ,
UCP_ATOMIC_POST_OP_LAST }

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 83

Atomic operation requested for ucp_atomic_post.

• enum ucp_atomic_fetch_op_t {
UCP_ATOMIC_FETCH_OP_FADD , UCP_ATOMIC_FETCH_OP_SWAP , UCP_ATOMIC_FETCH_OP_CSWAP
, UCP_ATOMIC_FETCH_OP_FAND ,
UCP_ATOMIC_FETCH_OP_FOR , UCP_ATOMIC_FETCH_OP_FXOR , UCP_ATOMIC_FETCH_OP_LAST
}

Atomic operation requested for ucp_atomic_fetch.

Functions

• ucs_status_t ucp_request_query (void ∗request, ucp_request_attr_t ∗attr)

Get information about ucp_request.

• ucs_status_ptr_t ucp_am_send_nbx (ucp_ep_h ep, unsigned id, const void ∗header, size_t header_length,
const void ∗buffer, size_t count, const ucp_request_param_t ∗param)

Send Active Message.

• ucs_status_ptr_t ucp_am_recv_data_nbx (ucp_worker_h worker, void ∗data_desc, void ∗buffer, size_t count,
const ucp_request_param_t ∗param)

Receive Active Message as defined by provided data descriptor.

• void ucp_am_data_release (ucp_worker_h worker, void ∗data)

Releases Active Message data.

• ucs_status_ptr_t ucp_stream_send_nbx (ucp_ep_h ep, const void ∗buffer, size_t count, const ucp_request_param_t
∗param)

Non-blocking stream send operation.

• ucs_status_ptr_t ucp_tag_send_nbx (ucp_ep_h ep, const void ∗buffer, size_t count, ucp_tag_t tag, const
ucp_request_param_t ∗param)

Non-blocking tagged-send operation.

• ucs_status_ptr_t ucp_tag_send_sync_nbx (ucp_ep_h ep, const void ∗buffer, size_t count, ucp_tag_t tag,
const ucp_request_param_t ∗param)

Non-blocking synchronous tagged-send operation.

• ucs_status_ptr_t ucp_stream_recv_nbx (ucp_ep_h ep, void ∗buffer, size_t count, size_t ∗length, const
ucp_request_param_t ∗param)

Non-blocking stream receive operation of structured data into a user-supplied buffer.

• ucs_status_ptr_t ucp_stream_recv_data_nb (ucp_ep_h ep, size_t ∗length)

Non-blocking stream receive operation of unstructured data into a UCP-supplied buffer.

• ucs_status_ptr_t ucp_tag_recv_nbx (ucp_worker_h worker, void ∗buffer, size_t count, ucp_tag_t tag,
ucp_tag_t tag_mask, const ucp_request_param_t ∗param)

Non-blocking tagged-receive operation.

• ucp_tag_message_h ucp_tag_probe_nb (ucp_worker_h worker, ucp_tag_t tag, ucp_tag_t tag_mask, int re-
move, ucp_tag_recv_info_t ∗info)

Non-blocking probe and return a message.

• ucs_status_ptr_t ucp_tag_msg_recv_nbx (ucp_worker_h worker, void ∗buffer, size_t count, ucp_tag_message_h
message, const ucp_request_param_t ∗param)

Non-blocking receive operation for a probed message.

• ucs_status_ptr_t ucp_put_nbx (ucp_ep_h ep, const void ∗buffer, size_t count, uint64_t remote_addr,
ucp_rkey_h rkey, const ucp_request_param_t ∗param)

Non-blocking remote memory put operation.

• ucs_status_ptr_t ucp_get_nbx (ucp_ep_h ep, void ∗buffer, size_t count, uint64_t remote_addr, ucp_rkey_h
rkey, const ucp_request_param_t ∗param)

Non-blocking remote memory get operation.

• ucs_status_ptr_t ucp_atomic_op_nbx (ucp_ep_h ep, ucp_atomic_op_t opcode, const void ∗buffer, size_←↩

t count, uint64_t remote_addr, ucp_rkey_h rkey, const ucp_request_param_t ∗param)

Post an atomic memory operation.

• ucs_status_t ucp_request_check_status (void ∗request)

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

84 Module Documentation

Check the status of non-blocking request.

• ucs_status_t ucp_tag_recv_request_test (void ∗request, ucp_tag_recv_info_t ∗info)

Check the status and currently available state of non-blocking request returned from ucp_tag_recv_nb routine.

• ucs_status_t ucp_stream_recv_request_test (void ∗request, size_t ∗length_p)

Check the status and currently available state of non-blocking request returned from ucp_stream_recv_nb routine.

• void ucp_request_cancel (ucp_worker_h worker, void ∗request)

Cancel an outstanding communications request.

• void ucp_stream_data_release (ucp_ep_h ep, void ∗data)

Release UCP data buffer returned by ucp_stream_recv_data_nb.

• void ucp_request_free (void ∗request)

Release a communications request.

• void ∗ ucp_request_alloc (ucp_worker_h worker)

Create an empty communications request.

• int ucp_request_is_completed (void ∗request)
• ucs_status_t ucp_put (ucp_ep_h ep, const void ∗buffer, size_t length, uint64_t remote_addr, ucp_rkey_h rkey)

Blocking remote memory put operation.

• ucs_status_t ucp_get (ucp_ep_h ep, void ∗buffer, size_t length, uint64_t remote_addr, ucp_rkey_h rkey)

Blocking remote memory get operation.

• ucs_status_t ucp_atomic_add32 (ucp_ep_h ep, uint32_t add, uint64_t remote_addr, ucp_rkey_h rkey)

Blocking atomic add operation for 32 bit integers.

• ucs_status_t ucp_atomic_add64 (ucp_ep_h ep, uint64_t add, uint64_t remote_addr, ucp_rkey_h rkey)

Blocking atomic add operation for 64 bit integers.

• ucs_status_t ucp_atomic_fadd32 (ucp_ep_h ep, uint32_t add, uint64_t remote_addr, ucp_rkey_h rkey,
uint32_t ∗result)

Blocking atomic fetch and add operation for 32 bit integers.

• ucs_status_t ucp_atomic_fadd64 (ucp_ep_h ep, uint64_t add, uint64_t remote_addr, ucp_rkey_h rkey,
uint64_t ∗result)

Blocking atomic fetch and add operation for 64 bit integers.

• ucs_status_t ucp_atomic_swap32 (ucp_ep_h ep, uint32_t swap, uint64_t remote_addr, ucp_rkey_h rkey,
uint32_t ∗result)

Blocking atomic swap operation for 32 bit values.

• ucs_status_t ucp_atomic_swap64 (ucp_ep_h ep, uint64_t swap, uint64_t remote_addr, ucp_rkey_h rkey,
uint64_t ∗result)

Blocking atomic swap operation for 64 bit values.

• ucs_status_t ucp_atomic_cswap32 (ucp_ep_h ep, uint32_t compare, uint32_t swap, uint64_t remote_addr,
ucp_rkey_h rkey, uint32_t ∗result)

Blocking atomic conditional swap (cswap) operation for 32 bit values.

• ucs_status_t ucp_atomic_cswap64 (ucp_ep_h ep, uint64_t compare, uint64_t swap, uint64_t remote_addr,
ucp_rkey_h rkey, uint64_t ∗result)

Blocking atomic conditional swap (cswap) operation for 64 bit values.

• ucs_status_ptr_t ucp_am_send_nb (ucp_ep_h ep, uint16_t id, const void ∗buffer, size_t count,
ucp_datatype_t datatype, ucp_send_callback_t cb, unsigned flags)

Send Active Message.

• ucs_status_ptr_t ucp_stream_send_nb (ucp_ep_h ep, const void ∗buffer, size_t count, ucp_datatype_t
datatype, ucp_send_callback_t cb, unsigned flags)

Non-blocking stream send operation.

• ucs_status_ptr_t ucp_stream_recv_nb (ucp_ep_h ep, void ∗buffer, size_t count, ucp_datatype_t datatype,
ucp_stream_recv_callback_t cb, size_t ∗length, unsigned flags)

Non-blocking stream receive operation of structured data into a user-supplied buffer.

• ucs_status_ptr_t ucp_tag_send_nb (ucp_ep_h ep, const void ∗buffer, size_t count, ucp_datatype_t datatype,
ucp_tag_t tag, ucp_send_callback_t cb)

Non-blocking tagged-send operations.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 85

• ucs_status_t ucp_tag_send_nbr (ucp_ep_h ep, const void ∗buffer, size_t count, ucp_datatype_t datatype,
ucp_tag_t tag, void ∗req)

Non-blocking tagged-send operations with user provided request.

• ucs_status_ptr_t ucp_tag_send_sync_nb (ucp_ep_h ep, const void ∗buffer, size_t count, ucp_datatype_t
datatype, ucp_tag_t tag, ucp_send_callback_t cb)

Non-blocking synchronous tagged-send operation.

• ucs_status_ptr_t ucp_tag_recv_nb (ucp_worker_h worker, void ∗buffer, size_t count, ucp_datatype_t
datatype, ucp_tag_t tag, ucp_tag_t tag_mask, ucp_tag_recv_callback_t cb)

Non-blocking tagged-receive operation.

• ucs_status_t ucp_tag_recv_nbr (ucp_worker_h worker, void ∗buffer, size_t count, ucp_datatype_t datatype,
ucp_tag_t tag, ucp_tag_t tag_mask, void ∗req)

Non-blocking tagged-receive operation.

• ucs_status_ptr_t ucp_tag_msg_recv_nb (ucp_worker_h worker, void ∗buffer, size_t count, ucp_datatype_t
datatype, ucp_tag_message_h message, ucp_tag_recv_callback_t cb)

Non-blocking receive operation for a probed message.

• ucs_status_t ucp_put_nbi (ucp_ep_h ep, const void ∗buffer, size_t length, uint64_t remote_addr, ucp_rkey_h
rkey)

Non-blocking implicit remote memory put operation.

• ucs_status_ptr_t ucp_put_nb (ucp_ep_h ep, const void ∗buffer, size_t length, uint64_t remote_addr,
ucp_rkey_h rkey, ucp_send_callback_t cb)

Non-blocking remote memory put operation.

• ucs_status_t ucp_get_nbi (ucp_ep_h ep, void ∗buffer, size_t length, uint64_t remote_addr, ucp_rkey_h rkey)

Non-blocking implicit remote memory get operation.

• ucs_status_ptr_t ucp_get_nb (ucp_ep_h ep, void ∗buffer, size_t length, uint64_t remote_addr, ucp_rkey_h
rkey, ucp_send_callback_t cb)

Non-blocking remote memory get operation.

• ucs_status_t ucp_atomic_post (ucp_ep_h ep, ucp_atomic_post_op_t opcode, uint64_t value, size_t op_size,
uint64_t remote_addr, ucp_rkey_h rkey)

Post an atomic memory operation.

• ucs_status_ptr_t ucp_atomic_fetch_nb (ucp_ep_h ep, ucp_atomic_fetch_op_t opcode, uint64_t value, void
∗result, size_t op_size, uint64_t remote_addr, ucp_rkey_h rkey, ucp_send_callback_t cb)

Post an atomic fetch operation.

6.1.7.1 Detailed Description

UCP Communication routines

6.1.7.2 Data Structure Documentation

6.1.7.2.1 struct ucp_request_attr_t

Data Fields

uint64_t field_mask Mask of valid fields in this structure, using bits from
ucp_req_attr_field. Fields not specified in this mask will be
ignored. Provides ABI compatibility with respect to adding new
fields.

char ∗ debug_string Pointer to allocated string of size debug_string_size that will be
filled with debug information about transports and protocols that
were selected to complete the request.

size_t debug_string_size Size of the debug_string. String will be filled up to this size.
Maximum possible size debug string can be obtained by querying
the worker via ucp_worker_query.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

86 Module Documentation

Data Fields

ucs_status_t status Status of the request. The same as ucp_request_check_status.

ucs_memory_type_t mem_type Detected memory type of the buffer passed to the operation.

6.1.7.2.2 struct ucp_err_handler

This structure should be initialized in ucp_ep_params_t to handle peer failure

Data Fields

ucp_err_handler_cb_t cb Error handler callback, if NULL, will not be called.

void ∗ arg User defined argument associated with an endpoint, it will be overridden by
ucp_ep_params_t::user_data if both are set.

6.1.7.3 Typedef Documentation

6.1.7.3.1 ucp_tag_t

typedef uint64_t ucp_tag_t

UCP tag identifier is a 64bit object used for message identification. UCP tag send and receive operations use the
object for an implementation tag matching semantics (derivative of MPI tag matching semantics).

6.1.7.3.2 ucp_tag_message_h

typedef struct ucp_recv_desc∗ ucp_tag_message_h

UCP Message descriptor is an opaque handle for a message returned by ucp_tag_probe_nb. This handle can be
passed to ucp_tag_msg_recv_nb in order to receive the message data to a specific buffer.

6.1.7.3.3 ucp_datatype_t

typedef uint64_t ucp_datatype_t

UCP datatype identifier is a 64bit object used for datatype identification. Predefined UCP identifiers are defined by
ucp_dt_type.

6.1.7.3.4 ucp_send_callback_t

typedef void(∗ ucp_send_callback_t) (void ∗request, ucs_status_t status)

This callback routine is invoked whenever the send operation is completed. It is important to note that the call-back
is only invoked in a case when the operation cannot be completed in place.

Parameters

in request The completed send request.

in status Completion status. If the send operation was completed successfully UCS_OK is returned. If
send operation was canceled UCS_ERR_CANCELED is returned. Otherwise, an error status
is returned.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 87

6.1.7.3.5 ucp_send_nbx_callback_t

typedef void(∗ ucp_send_nbx_callback_t) (void ∗request, ucs_status_t status, void ∗user_data)

This callback routine is invoked whenever the ucp_tag_send_nbx, ucp_am_send_nbx, ucp_stream_send_nbx,
ucp_put_nbx, ucp_get_nbx, ucp_atomic_op_nbx or any other ¨send operation¨ is completed.

Parameters

in request The completed send request.

in status Completion status. If the send operation was completed successfully UCS_OK is returned.
If send operation was canceled UCS_ERR_CANCELED is returned. Otherwise, an
error status is returned.

in user_data User data passed to ¨user_data¨ value, see ucp_request_param_t

Examples

ucp_client_server.c.

6.1.7.3.6 ucp_err_handler_cb_t

typedef void(∗ ucp_err_handler_cb_t) (void ∗arg, ucp_ep_h ep, ucs_status_t status)

This callback routine is invoked when transport level error detected.

Parameters

in arg User argument to be passed to the callback.

in ep Endpoint to handle transport level error. Upon return from the callback, this ep is no longer
usable and all subsequent operations on this ep will fail with the error code passed in status.

in status error status.

6.1.7.3.7 ucp_err_handler_t

typedef struct ucp_err_handler ucp_err_handler_t

This structure should be initialized in ucp_ep_params_t to handle peer failure

6.1.7.3.8 ucp_stream_recv_callback_t

typedef void(∗ ucp_stream_recv_callback_t) (void ∗request, ucs_status_t status, size_t length)

This callback routine is invoked whenever the receive operation is completed and the data is ready in the receive
buffer.

Parameters

in request The completed receive request.

in status Completion status. If the send operation was completed successfully UCS_OK is returned.
Otherwise, an error status is returned.

in length The size of the received data in bytes, always boundary of base datatype size. The value is
valid only if the status is UCS_OK.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

88 Module Documentation

6.1.7.3.9 ucp_stream_recv_nbx_callback_t

typedef void(∗ ucp_stream_recv_nbx_callback_t) (void ∗request, ucs_status_t status, size_←↩

t length, void ∗user_data)

This callback routine is invoked whenever the receive operation is completed and the data is ready in the receive
buffer.

Parameters

in request The completed receive request.

in status Completion status. If the send operation was completed successfully UCS_OK is returned.
Otherwise, an error status is returned.

in length The size of the received data in bytes, always on the boundary of base datatype size. The
value is valid only if the status is UCS_OK.

in user_data User data passed to ¨user_data¨ value, see ucp_request_param_t.

6.1.7.3.10 ucp_tag_recv_callback_t

typedef void(∗ ucp_tag_recv_callback_t) (void ∗request, ucs_status_t status, ucp_tag_recv_info_t

∗info)

This callback routine is invoked whenever the receive operation is completed and the data is ready in the receive
buffer.

Parameters

in request The completed receive request.

in status Completion status. If the send operation was completed successfully UCS_OK is returned. If
send operation was canceled UCS_ERR_CANCELED is returned. If the data can not fit into
the receive buffer the UCS_ERR_MESSAGE_TRUNCATED error code is returned.
Otherwise, an error status is returned.

in info Completion information The info descriptor is Valid only if the status is UCS_OK.

6.1.7.3.11 ucp_tag_recv_nbx_callback_t

typedef void(∗ ucp_tag_recv_nbx_callback_t) (void ∗request, ucs_status_t status, const ucp_tag_recv_info_t

∗tag_info, void ∗user_data)

This callback routine is invoked whenever the receive operation is completed and the data is ready in the receive
buffer.

Parameters

in request The completed receive request.

in status Completion status. If the receive operation was completed successfully UCS_OK is
returned. If send operation was canceled, UCS_ERR_CANCELED is returned. If the data
can not fit into the receive buffer the UCS_ERR_MESSAGE_TRUNCATED error code is
returned. Otherwise, an error status is returned.

in tag_info Completion information The info descriptor is Valid only if the status is UCS_OK.

in user_data User data passed to ¨user_data¨ value, see ucp_request_param_t

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 89

6.1.7.3.12 ucp_am_recv_data_nbx_callback_t

typedef void(∗ ucp_am_recv_data_nbx_callback_t) (void ∗request, ucs_status_t status, size_←↩

t length, void ∗user_data)

This callback routine is invoked whenever the receive operation is completed and the data is ready in the receive
buffer.

Parameters

in request The completed receive request.

in status Completion status. If the receive operation was completed successfully UCS_OK is
returned. Otherwise, an error status is returned.

in length The size of the received data in bytes, always boundary of base datatype size. The value
is valid only if the status is UCS_OK.

in user_data User data passed to ¨user_data¨ value, see ucp_request_param_t

6.1.7.4 Enumeration Type Documentation

6.1.7.4.1 ucp_atomic_op_t

enum ucp_atomic_op_t

This enumeration defines which atomic memory operation should be performed by the ucp_atomic_op_nbx routine.

Enumerator

UCP_ATOMIC_OP_ADD Atomic add

UCP_ATOMIC_OP_SWAP Atomic swap

UCP_ATOMIC_OP_CSWAP Atomic conditional swap

UCP_ATOMIC_OP_AND Atomic and

UCP_ATOMIC_OP_OR Atomic or

UCP_ATOMIC_OP_XOR Atomic xor

UCP_ATOMIC_OP_LAST

6.1.7.4.2 ucp_stream_recv_flags_t

enum ucp_stream_recv_flags_t

This enumeration defines behavior of ucp_stream_recv_nb function.

Enumerator

UCP_STREAM_RECV_FLAG_WAITALL This flag requests that the operation will not be completed until all
requested data is received and placed in the user buffer.

6.1.7.4.3 ucp_op_attr_t

enum ucp_op_attr_t

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

90 Module Documentation

The enumeration allows specifying which fields in ucp_request_param_t are present and operation flags are used.
It is used to enable backward compatibility support.

Enumerator

UCP_OP_ATTR_FIELD_REQUEST request field

UCP_OP_ATTR_FIELD_CALLBACK cb field
UCP_OP_ATTR_FIELD_USER_DATA user_data field

UCP_OP_ATTR_FIELD_DATATYPE datatype field

UCP_OP_ATTR_FIELD_FLAGS operation-specific flags

UCP_OP_ATTR_FIELD_REPLY_BUFFER reply_buffer field

UCP_OP_ATTR_FIELD_MEMORY_TYPE memory type field

UCP_OP_ATTR_FIELD_RECV_INFO recv_info field
UCP_OP_ATTR_FIELD_MEMH memory handle field

UCP_OP_ATTR_FLAG_NO_IMM_CMPL Deny immediate completion, i.e NULL cannot be returned. If
a completion callback is provided, it can be called before the
function returns.

UCP_OP_ATTR_FLAG_FAST_CMPL expedite local completion, even if it delays remote data
delivery. Note for implementer: this option can disable zero
copy and/or rendezvous protocols which require
synchronization with the remote peer before releasing the
local send buffer

UCP_OP_ATTR_FLAG_FORCE_IMM_CMPL force immediate complete operation, fail if the operation
cannot be completed immediately

UCP_OP_ATTR_FLAG_MULTI_SEND optimize for bandwidth of multiple in-flight operations, rather
than for the latency of a single operation. This flag and
UCP_OP_ATTR_FLAG_FAST_CMPL are mutually exclusive.

6.1.7.4.4 ucp_req_attr_field

enum ucp_req_attr_field

The enumeration allows specifying which fields in ucp_request_attr_t are present. It is used to enable backward
compatibility support.

Enumerator

UCP_REQUEST_ATTR_FIELD_INFO_STRING
UCP_REQUEST_ATTR_FIELD_INFO_STRING_SIZE

UCP_REQUEST_ATTR_FIELD_STATUS
UCP_REQUEST_ATTR_FIELD_MEM_TYPE

6.1.7.4.5 ucp_am_recv_attr_t

enum ucp_am_recv_attr_t

The enumeration allows specifying which fields in ucp_am_recv_param_t are present and receive operation flags
are used. It is used to enable backward compatibility support.

Enumerator

UCP_AM_RECV_ATTR_FIELD_REPLY_EP reply_ep field

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 91

Enumerator

UCP_AM_RECV_ATTR_FLAG_DATA Indicates that the data provided in ucp_am_recv_callback_t
callback can be held by the user. If UCS_INPROGRESS is
returned from the callback, the data parameter will persist and
the user has to call ucp_am_data_release when data is no
longer needed. This flag is mutually exclusive with
UCP_AM_RECV_ATTR_FLAG_RNDV.

UCP_AM_RECV_ATTR_FLAG_RNDV Indicates that the arriving data was sent using rendezvous
protocol. In this case data parameter of the
ucp_am_recv_callback_t points to the internal UCP descriptor,
which can be used for obtaining the actual data by calling
ucp_am_recv_data_nbx routine. This flag is mutually exclusive
with UCP_AM_RECV_ATTR_FLAG_DATA.

6.1.7.4.6 ucp_am_handler_param_field

enum ucp_am_handler_param_field

The enumeration allows specifying which fields in ucp_am_handler_param_t are present. It is used to enable
backward compatibility support.

Enumerator

UCP_AM_HANDLER_PARAM_FIELD_ID Indicates that ucp_am_handler_param_t::id field is valid.

UCP_AM_HANDLER_PARAM_FIELD_FLAGS Indicates that ucp_am_handler_param_t::flags field is valid.

UCP_AM_HANDLER_PARAM_FIELD_CB Indicates that ucp_am_handler_param_t::cb field is valid.

UCP_AM_HANDLER_PARAM_FIELD_ARG Indicates that ucp_am_handler_param_t::arg field is valid.

6.1.7.4.7 ucp_atomic_post_op_t

enum ucp_atomic_post_op_t

Deprecated Use ucp_atomic_op_nbx and ucp_atomic_op_t instead.

This enumeration defines which atomic memory operation should be performed by the ucp_atomic_post family of
functions. All of these are non-fetching atomics and will not result in a request handle.

Enumerator

UCP_ATOMIC_POST_OP_ADD Atomic add
UCP_ATOMIC_POST_OP_AND Atomic and

UCP_ATOMIC_POST_OP_OR Atomic or

UCP_ATOMIC_POST_OP_XOR Atomic xor
UCP_ATOMIC_POST_OP_LAST

6.1.7.4.8 ucp_atomic_fetch_op_t

enum ucp_atomic_fetch_op_t

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

92 Module Documentation

Deprecated Use ucp_atomic_op_nbx and ucp_atomic_op_t instead.

This enumeration defines which atomic memory operation should be performed by the ucp_atomic_fetch family of
functions. All of these functions will fetch data from the remote node.

Enumerator

UCP_ATOMIC_FETCH_OP_FADD Atomic Fetch and add

UCP_ATOMIC_FETCH_OP_SWAP Atomic swap

UCP_ATOMIC_FETCH_OP_CSWAP Atomic conditional swap

UCP_ATOMIC_FETCH_OP_FAND Atomic Fetch and and

UCP_ATOMIC_FETCH_OP_FOR Atomic Fetch and or

UCP_ATOMIC_FETCH_OP_FXOR Atomic Fetch and xor

UCP_ATOMIC_FETCH_OP_LAST

6.1.7.5 Function Documentation

6.1.7.5.1 ucp_request_query()

ucs_status_t ucp_request_query (

void ∗ request,

ucp_request_attr_t ∗ attr)

Parameters

in request Non-blocking request to query.

out attr Filled with attributes of the request.

Returns

Error code as defined by ucs_status_t

6.1.7.5.2 ucp_am_send_nbx()

ucs_status_ptr_t ucp_am_send_nbx (

ucp_ep_h ep,

unsigned id,

const void ∗ header,

size_t header_length,

const void ∗ buffer,

size_t count,

const ucp_request_param_t ∗ param)

This routine sends an Active Message to an ep. If the operation completes immediately, then the routine returns
NULL and the callback function is ignored, even if specified. Otherwise, if no error is reported and a callback is
requested (i.e. the UCP_OP_ATTR_FIELD_CALLBACK flag is set in the op_attr_mask field of param), then the
UCP library will schedule invocation of the callback routine param->cb.send upon completion of the operation.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 93

Note

If UCP_OP_ATTR_FLAG_NO_IMM_CMPL flag is set in the op_attr_mask field of param, then the operation
will return a request handle, even if it completes immediately.

This operation supports specific flags, which can be passed in param by ucp_request_param_t::flags. The
exact set of flags is defined by ucp_send_am_flags.

Parameters

in ep UCP endpoint where the Active Message will be run.

in id Active Message id. Specifies which registered callback to run.

in header User defined Active Message header. NULL value is allowed if no header needed. In
this case header_length must be set to 0. By default the header must be valid until the
active message send operation completes. If the flag
UCP_AM_SEND_FLAG_COPY_HEADER is specified, the header is only required to
be valid until this function call returns.

in header_length Active message header length in bytes.

in buffer Pointer to the data to be sent to the target node of the Active Message.

in count Number of elements to send.
in param Operation parameters, see ucp_request_param_t.

Note

Sending only header without actual data is allowed and is recommended for transferring a latency-critical
amount of data.

The maximum allowed header size can be obtained by querying worker attributes by the ucp_worker_query
routine.

Returns

NULL - Active Message was sent immediately.

UCS_PTR_IS_ERR(_ptr) - Error sending Active Message.

otherwise - Operation was scheduled for send and can be completed at any point in time. The request handle
is returned to the application in order to track progress of the message. If user request was not provided in
param->request, the application is responsible for releasing the handle using ucp_request_free routine.

Examples

ucp_client_server.c.

6.1.7.5.3 ucp_am_recv_data_nbx()

ucs_status_ptr_t ucp_am_recv_data_nbx (

ucp_worker_h worker,

void ∗ data_desc,

void ∗ buffer,

size_t count,

const ucp_request_param_t ∗ param)

This routine receives a message that is described by the data descriptor data_desc, local address buffer, size count
and param parameters on the worker. The routine is non-blocking and therefore returns immediately. The receive
operation is considered completed when the message is delivered to the buffer. If the receive operation cannot be
started the routine returns an error.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

94 Module Documentation

Note

This routine can be performed on any valid data descriptor delivered in ucp_am_recv_callback_t. Data de-
scriptor is considered to be valid if:

• It is a rendezvous request (UCP_AM_RECV_ATTR_FLAG_RNDV is set in ucp_am_recv_param_t::recv_attr)
or

• It is a persistent data pointer (UCP_AM_RECV_ATTR_FLAG_DATA is set in ucp_am_recv_param_t::recv_attr).
In this case receive operation may be needed to unpack data to device memory (for example GPU de-
vice) or some specific datatype.

After this call UCP takes ownership of data_desc descriptor, so there is no need to release it even if the oper-
ation fails. The routine returns a request handle instead, which can be used for tracking operation progress.

Parameters

in worker Worker that is used for the receive operation.

in data_desc Data descriptor, provided in ucp_am_recv_callback_t routine.

in buffer Pointer to the buffer to receive the data.
in count Number of elements to receive into buffer.
in param Operation parameters, see ucp_request_param_t.

Returns

NULL - The receive operation was completed immediately. In this case, if param->recv_info.length is specified
in the param, the value to which it points is updated with the size of the received message.

UCS_PTR_IS_ERR(_ptr) - The receive operation failed.

otherwise - Receive operation was scheduled and can be completed at any point in time. The request handle
is returned to the application in order to track operation progress. If user request was not provided in param-
>request, the application is responsible for releasing the handle using ucp_request_free routine.

Examples

ucp_client_server.c.

6.1.7.5.4 ucp_am_data_release()

void ucp_am_data_release (

ucp_worker_h worker,

void ∗ data)

This routine releases data that persisted through an Active Message callback because that callback returned UCS←↩

_INPROGRESS.

Parameters

in worker Worker which received the Active Message.

in data Pointer to data that was passed into the Active Message callback as the data parameter.

6.1.7.5.5 ucp_stream_send_nbx()

ucs_status_ptr_t ucp_stream_send_nbx (

ucp_ep_h ep,

const void ∗ buffer,

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 95

size_t count,

const ucp_request_param_t ∗ param)

This routine sends data that is described by the local address buffer, size count object to the destination endpoint ep.
The routine is non-blocking and therefore returns immediately, however the actual send operation may be delayed.
The send operation is considered completed when it is safe to reuse the source buffer. If the send operation is
completed immediately the routine returns UCS_OK.

Note

The user should not modify any part of the buffer after this operation is called, until the operation completes.

Parameters

in ep Destination endpoint handle.

in buffer Pointer to the message buffer (payload).

in count Number of elements to send.
in param Operation parameters, see ucp_request_param_t.

Returns

NULL - The send operation was completed immediately.

UCS_PTR_IS_ERR(_ptr) - The send operation failed.

otherwise - Operation was scheduled for send and can be completed at any point in time. The request handle
is returned to the application in order to track progress of the message.

Examples

ucp_client_server.c.

6.1.7.5.6 ucp_tag_send_nbx()

ucs_status_ptr_t ucp_tag_send_nbx (

ucp_ep_h ep,

const void ∗ buffer,

size_t count,

ucp_tag_t tag,

const ucp_request_param_t ∗ param)

This routine sends a messages that is described by the local address buffer, size count object to the destination end-
point ep. Each message is associated with a tag value that is used for message matching on the ucp_tag_recv_nb or
receiver. The routine is non-blocking and therefore returns immediately, however the actual send operation may be
delayed. The send operation is considered completed when it is safe to reuse the source buffer. If the send opera-
tion is completed immediately the routine returns UCS_OK and the call-back function is not invoked. If the operation
is not completed immediately and no error reported then the UCP library will schedule to invoke the call-back when-
ever the send operation is completed. In other words, the completion of a message can be signaled by the return
code or the call-back. Immediate completion signals can be fine-tuned via the ucp_request_param_t::op_attr_mask
field in the ucp_request_param_t structure. The values of this field are a bit-wise OR of the ucp_op_attr_t enumer-
ation.

Note

The user should not modify any part of the buffer after this operation is called, until the operation completes.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

96 Module Documentation

Parameters

in ep Destination endpoint handle.

in buffer Pointer to the message buffer (payload).

in count Number of elements to send
in tag Message tag.

in param Operation parameters, see ucp_request_param_t

Returns

UCS_OK - The send operation was completed immediately.

UCS_PTR_IS_ERR(_ptr) - The send operation failed.

otherwise - Operation was scheduled for send and can be completed in any point in time. The request handle
is returned to the application in order to track progress of the message.

Examples

ucp_client_server.c, and ucp_hello_world.c.

6.1.7.5.7 ucp_tag_send_sync_nbx()

ucs_status_ptr_t ucp_tag_send_sync_nbx (

ucp_ep_h ep,

const void ∗ buffer,

size_t count,

ucp_tag_t tag,

const ucp_request_param_t ∗ param)

Same as ucp_tag_send_nbx, except the request completes only after there is a remote tag match on the message
(which does not always mean the remote receive has been completed). This function never completes ¨in-place¨,
and always returns a request handle.

Note

The user should not modify any part of the buffer after this operation is called, until the operation completes.

Returns UCS_ERR_UNSUPPORTED if UCP_ERR_HANDLING_MODE_PEER is enabled. This is a tempo-
rary implementation-related constraint that will be addressed in future releases.

Parameters

in ep Destination endpoint handle.

in buffer Pointer to the message buffer (payload).

in count Number of elements to send
in tag Message tag.

in param Operation parameters, see ucp_request_param_t

Returns

UCS_OK - The send operation was completed immediately.

UCS_PTR_IS_ERR(_ptr) - The send operation failed.

otherwise - Operation was scheduled for send and can be completed in any point in time. The request handle
is returned to the application in order to track progress of the message.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 97

6.1.7.5.8 ucp_stream_recv_nbx()

ucs_status_ptr_t ucp_stream_recv_nbx (

ucp_ep_h ep,

void ∗ buffer,

size_t count,

size_t ∗ length,

const ucp_request_param_t ∗ param)

This routine receives data that is described by the local address buffer, size count object on the endpoint ep. The
routine is non-blocking and therefore returns immediately. The receive operation is considered complete when the
message is delivered to the buffer. If the receive operation cannot be started, then the routine returns an error.

Parameters

in ep UCP endpoint that is used for the receive operation.

in buffer Pointer to the buffer that will receive the data.
in count Number of elements to receive into buffer.
out length Size of the received data in bytes. The value is valid only if return code is NULL.

in param Operation parameters, see ucp_request_param_t. This operation supports specific flags,
which can be passed in param by ucp_request_param_t::flags. The exact set of flags is
defined by ucp_stream_recv_flags_t.

Returns

NULL - The receive operation was completed immediately. In this case the value pointed by length is updated
by the size of received data. Note param->recv_info is not relevant for this function.

UCS_PTR_IS_ERR(_ptr) - The receive operation failed.

otherwise - Operation was scheduled for receive. A request handle is returned to the application in order to
track progress of the operation.

Note

The amount of data received, in bytes, is always an integral multiple of the datatype size.

Examples

ucp_client_server.c.

6.1.7.5.9 ucp_stream_recv_data_nb()

ucs_status_ptr_t ucp_stream_recv_data_nb (

ucp_ep_h ep,

size_t ∗ length)

This routine receives any available data from endpoint ep. Unlike ucp_stream_recv_nb, the returned data is un-
structured and is treated as an array of bytes. If data is immediately available, UCS_STATUS_PTR(_ptr) is returned
as a pointer to the data, and length is set to the size of the returned data buffer. The routine is non-blocking and
therefore returns immediately.

Parameters

in ep UCP endpoint that is used for the receive operation.

out length Length of received data.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

98 Module Documentation

Returns

NULL - No received data available on the ep.

UCS_PTR_IS_ERR(_ptr) - the receive operation failed and UCS_PTR_STATUS(_ptr) indicates an error.

otherwise - The pointer to the data UCS_STATUS_PTR(_ptr) is returned to the application. After the data is
processed, the application is responsible for releasing the data buffer by calling the ucp_stream_data_release
routine.

Note

This function returns packed data (equivalent to ucp_dt_make_contig(1)).

This function returns a pointer to a UCP-supplied buffer, whereas ucp_stream_recv_nb places the data into a
user-provided buffer. In some cases, receiving data directly into a UCP-supplied buffer can be more optimal,
for example by processing the incoming data in-place and thus avoiding extra memory copy operations.

6.1.7.5.10 ucp_tag_recv_nbx()

ucs_status_ptr_t ucp_tag_recv_nbx (

ucp_worker_h worker,

void ∗ buffer,

size_t count,

ucp_tag_t tag,

ucp_tag_t tag_mask,

const ucp_request_param_t ∗ param)

This routine receives a message that is described by the local address buffer, size count, and info object on the
worker. The tag value of the receive message has to match the tag and tag_mask values, where the tag_mask
indicates what bits of the tag have to be matched. The routine is a non-blocking and therefore returns immediately.
The receive operation is considered completed when the message is delivered to the buffer. In order to notify the
application about completion of the receive operation the UCP library will invoke the call-back cb when the received
message is in the receive buffer and ready for application access. If the receive operation cannot be started, then
the routine returns an error.

Parameters

in worker UCP worker that is used for the receive operation.

in buffer Pointer to the buffer to receive the data.
in count Number of elements to receive
in tag Message tag to expect.

in tag_mask Bit mask that indicates the bits that are used for the matching of the incoming tag against
the expected tag.

in param Operation parameters, see ucp_request_param_t

Returns

NULL - The receive operation was completed immediately. In this case, if param->recv_info.tag_info is spec-
ified in the param, the value to which it points is updated with the information about the received message.

UCS_PTR_IS_ERR(_ptr) - The receive operation failed.

otherwise - Operation was scheduled for receive. The request handle is returned to the application in
order to track progress of the operation. The application is responsible for releasing the handle using
ucp_request_free() routine.

Examples

ucp_client_server.c.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 99

6.1.7.5.11 ucp_tag_probe_nb()

ucp_tag_message_h ucp_tag_probe_nb (

ucp_worker_h worker,

ucp_tag_t tag,

ucp_tag_t tag_mask,

int remove,

ucp_tag_recv_info_t ∗ info)

This routine probes (checks) if a messages described by the tag and tag_mask was received (fully or partially) on
the worker. The tag value of the received message has to match the tag and tag_mask values, where the tag_mask
indicates what bits of the tag have to be matched. The function returns immediately and if the message is matched
it returns a handle for the message.

Parameters

in worker UCP worker that is used for the probe operation.

in tag Message tag to probe for.

in tag_mask Bit mask that indicates the bits that are used for the matching of the incoming tag against
the expected tag.

in remove The flag indicates if the matched message has to be removed from UCP library. If true
(1), the message handle is removed from the UCP library and the application is
responsible to call ucp_tag_msg_recv_nb() in order to receive the data and release the
resources associated with the message handle. If false (0), the return value is merely an
indication to whether a matching message is present, and it cannot be used in any other
way, and in particular it cannot be passed to ucp_tag_msg_recv_nb().

out info If the matching message is found the descriptor is filled with the details about the
message.

Returns

NULL - No match found.

Message handle (not NULL) - If message is matched the message handle is returned.

Note

This function does not advance the communication state of the network. If this routine is used in busy-poll
mode, need to make sure ucp_worker_progress() is called periodically to extract messages from the transport.

Examples

ucp_hello_world.c.

6.1.7.5.12 ucp_tag_msg_recv_nbx()

ucs_status_ptr_t ucp_tag_msg_recv_nbx (

ucp_worker_h worker,

void ∗ buffer,

size_t count,

ucp_tag_message_h message,

const ucp_request_param_t ∗ param)

This routine receives a message that is described by the local address buffer, size count, and message han-
dle on the worker. The message handle can be obtained by calling the ucp_tag_probe_nb() routine. The
ucp_tag_msg_recv_nbx() routine is non-blocking and therefore returns immediately. The receive operation is con-
sidered completed when the message is delivered to the buffer. In order to notify the application about completion

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

100 Module Documentation

of the receive operation the UCP library will invoke the call-back cb when the received message is in the receive
buffer and ready for application access. If the receive operation cannot be started, then the routine returns an error.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 101

Parameters

in worker UCP worker that is used for the receive operation.

in buffer Pointer to the buffer that will receive the data.
in count Number of elements to receive
in message Message handle.

in param Operation parameters, see ucp_request_param_t

Returns

UCS_PTR_IS_ERR(_ptr) - The receive operation failed.

otherwise - Operation was scheduled for receive. The request handle is returned to the application in
order to track progress of the operation. The application is responsible for releasing the handle using
ucp_request_free() routine.

Examples

ucp_hello_world.c.

6.1.7.5.13 ucp_put_nbx()

ucs_status_ptr_t ucp_put_nbx (

ucp_ep_h ep,

const void ∗ buffer,

size_t count,

uint64_t remote_addr,

ucp_rkey_h rkey,

const ucp_request_param_t ∗ param)

This routine initiates a storage of contiguous block of data that is described by the local address buffer in the remote
contiguous memory region described by remote_addr address and the memory handle rkey. The routine returns
immediately and does not guarantee re-usability of the source address buffer. If the operation is completed immedi-
ately the routine return UCS_OK, otherwise UCS_INPROGRESS or an error is returned to user. If the put operation
completes immediately, the routine returns UCS_OK and the call-back routine param.cb.send is not invoked. If the
operation is not completed immediately and no error is reported, then the UCP library will schedule invocation of
the call-back routine param.cb.send upon completion of the put operation. In other words, the completion of a put
operation can be signaled by the return code or execution of the call-back. Immediate completion signals can be
fine-tuned via the ucp_request_param_t::op_attr_mask field in the ucp_request_param_t structure. The values of
this field are a bit-wise OR of the ucp_op_attr_t enumeration.

Note

The completion of a put operation signals the local buffer can be reused. The completion of the operation on
the remote address requires use of ucp_worker_flush_nbx() or ucp_ep_flush_nbx(), after completion of which
the data in remote_addr is guaranteed to be available.

Parameters

in ep Remote endpoint handle.

in buffer Pointer to the local source address.
in count Number of elements of type ucp_request_param_t::datatype to put. If

ucp_request_param_t::datatype is not specified, the type defaults to
ucp_dt_make_contig(1), which corresponds to byte elements.

in remote_addr Pointer to the destination remote memory address to write to.

in rkey Remote memory key associated with the remote memory address.

in param Operation parameters, see ucp_request_param_t

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

102 Module Documentation

Returns

UCS_OK - The operation was completed immediately.

UCS_PTR_IS_ERR(_ptr) - The operation failed.

otherwise - Operation was scheduled and can be completed at any point in time. The request handle is
returned to the application in order to track progress of the operation. The application is responsible for
releasing the handle using ucp_request_free() routine.

Note

Only the datatype ucp_dt_make_contig(1) is supported for param->datatype, see ucp_dt_make_contig.

6.1.7.5.14 ucp_get_nbx()

ucs_status_ptr_t ucp_get_nbx (

ucp_ep_h ep,

void ∗ buffer,

size_t count,

uint64_t remote_addr,

ucp_rkey_h rkey,

const ucp_request_param_t ∗ param)

This routine initiates a load of a contiguous block of data that is described by the remote memory address remote←↩

_addr and the memory handle rkey in the local contiguous memory region described by buffer address. The routine
returns immediately and does not guarantee that remote data is loaded and stored under the local address buffer.
If the operation is completed immediately the routine return UCS_OK, otherwise UCS_INPROGRESS or an error is
returned to user. If the get operation completes immediately, the routine returns UCS_OK and the call-back routine
param.cb.send is not invoked. If the operation is not completed immediately and no error is reported, then the UCP
library will schedule invocation of the call-back routine param.cb.send upon completion of the get operation. In other
words, the completion of a get operation can be signaled by the return code or execution of the call-back.

Note

A user can use ucp_worker_flush_nb() in order to guarantee re-usability of the source address buffer.

The completion of a get operation signals the local buffer holds the the expected data and that both lo-
cal buffer and remote remote_addr are safe to be reused, unlike with ucp_put_nbx where the use of
ucp_worker_flush_nbx() or ucp_ep_flush_nbx() is required before the remote data is available.

Parameters

in ep Remote endpoint handle.

in buffer Pointer to the local destination address.
in count Number of elements of type ucp_request_param_t::datatype to put. If

ucp_request_param_t::datatype is not specified, the type defaults to
ucp_dt_make_contig(1), which corresponds to byte elements.

in remote_addr Pointer to the source remote memory address to read from.

in rkey Remote memory key associated with the remote memory address.

in param Operation parameters, see ucp_request_param_t.

Returns

UCS_OK - The operation was completed immediately.

UCS_PTR_IS_ERR(_ptr) - The operation failed.

otherwise - Operation was scheduled and can be completed at any point in time. The request handle is

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 103

returned to the application in order to track progress of the operation. The application is responsible for
releasing the handle using ucp_request_free() routine.

Note

Only the datatype ucp_dt_make_contig(1) is supported for param->datatype, see ucp_dt_make_contig.

6.1.7.5.15 ucp_atomic_op_nbx()

ucs_status_ptr_t ucp_atomic_op_nbx (

ucp_ep_h ep,

ucp_atomic_op_t opcode,

const void ∗ buffer,

size_t count,

uint64_t remote_addr,

ucp_rkey_h rkey,

const ucp_request_param_t ∗ param)

This routine will post an atomic operation to remote memory. The remote value is described by the combination
of the remote memory address remote_addr and the remote memory handle rkey. The routine is non-blocking and
therefore returns immediately. However, the actual atomic operation may be delayed. In order to enable fetching
semantics for atomic operations user has to specify param.reply_buffer. Please see 6.154 below for more details.

Note

The user should not modify any part of the buffer (or also param->reply_buffer for fetch operations), until the
operation completes.

Only ucp_dt_make_config(4) and ucp_dt_make_contig(8) are supported in param->datatype, see
ucp_dt_make_contig. Also, currently atomic operations can handle one element only. Thus, count argu-
ment must be set to 1.

Table 6.154: Atomic Operations Semantic

Atomic
Operation

Pseudo code X Y Z Result

UCP_ATOMIC_OP_ADDResult=Y; Y+=X buffer remote_addr - param.reply_←↩

buffer(optional)

UCP_ATOMIC_OP_SWAPResult=Y; Y=X buffer remote_addr - param.reply_buffer

UCP_ATOMIC_OP_CSWAPResult=Y; if (X==Y)
then Y=Z

buffer remote_addr param.reply_buffer param.reply_buffer

UCP_ATOMIC_OP_ANDResult=Y; Y&=X buffer remote_addr - param.reply_←↩

buffer(optional)

UCP_ATOMIC_OP_ORResult=Y; Y|=X buffer remote_addr - param.reply_←↩

buffer(optional)

UCP_ATOMIC_OP_XORResult=Y; Y∧=X buffer remote_addr - param.reply_←↩

buffer(optional)

Parameters

in ep UCP endpoint.

in opcode One of ucp_atomic_op_t.

in buffer Address of operand for the atomic operation. See 6.154 for exact usage by different
atomic operations.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

104 Module Documentation

Parameters

in count Number of elements in buffer and result. The size of each element is specified by
ucp_request_param_t::datatype

in remote_addr Remote address to operate on.

in rkey Remote key handle for the remote memory address.

in param Operation parameters, see ucp_request_param_t.

Returns

NULL - The operation completed immediately.

UCS_PTR_IS_ERR(_ptr) - The operation failed.

otherwise - Operation was scheduled and can be completed at some time in the future. The request handle is
returned to the application in order to track progress of the operation.

6.1.7.5.16 ucp_request_check_status()

ucs_status_t ucp_request_check_status (

void ∗ request)

This routine checks the state of the request and returns its current status. Any value different from UCS_←↩

INPROGRESS means that request is in a completed state.

Parameters

in request Non-blocking request to check.

Returns

Error code as defined by ucs_status_t

Examples

ucp_client_server.c, and ucp_hello_world.c.

6.1.7.5.17 ucp_tag_recv_request_test()

ucs_status_t ucp_tag_recv_request_test (

void ∗ request,

ucp_tag_recv_info_t ∗ info)

This routine checks the state and returns current status of the request returned from ucp_tag_recv_nb routine or the
user allocated request for ucp_tag_recv_nbr. Any value different from UCS_INPROGRESS means that the request
is in a completed state.

Parameters

in request Non-blocking request to check.

out info It is filled with the details about the message available at the moment of calling.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 105

Returns

Error code as defined by ucs_status_t

6.1.7.5.18 ucp_stream_recv_request_test()

ucs_status_t ucp_stream_recv_request_test (

void ∗ request,

size_t ∗ length_p)

This routine checks the state and returns current status of the request returned from ucp_stream_recv_nb routine.
Any value different from UCS_INPROGRESS means that the request is in a completed state.

Parameters

in request Non-blocking request to check.

out length←↩

_p
The size of the received data in bytes. This value is only valid if the status is UCS_OK. If
valid, it is always an integral multiple of the datatype size associated with the request.

Returns

Error code as defined by ucs_status_t

6.1.7.5.19 ucp_request_cancel()

void ucp_request_cancel (

ucp_worker_h worker,

void ∗ request)

Parameters

in worker UCP worker.
in request Non-blocking request to cancel.

This routine tries to cancels an outstanding communication request. After calling this routine, the request will be
in completed or canceled (but not both) state regardless of the status of the target endpoint associated with the
communication request. If the request is completed successfully, the send or receive completion callbacks (based
on the type of the request) will be called with the status argument of the callback set to UCS_OK, and in a case it
is canceled the status argument is set to UCS_ERR_CANCELED. It is important to note that in order to release the
request back to the library the application is responsible for calling ucp_request_free().

6.1.7.5.20 ucp_stream_data_release()

void ucp_stream_data_release (

ucp_ep_h ep,

void ∗ data)

Parameters

in ep Endpoint data received from.

in data Data pointer to release, which was returned from ucp_stream_recv_data_nb.

This routine releases internal UCP data buffer returned by ucp_stream_recv_data_nb when data is processed, the

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

106 Module Documentation

application can't use this buffer after calling this function.

6.1.7.5.21 ucp_request_free()

void ucp_request_free (

void ∗ request)

Parameters

in request Non-blocking request to release.

This routine releases the non-blocking request back to the library, regardless of its current state. Communications
operations associated with this request will make progress internally, however no further notifications or callbacks
will be invoked for this request.

Examples

ucp_client_server.c, and ucp_hello_world.c.

6.1.7.5.22 ucp_request_alloc()

void ∗ ucp_request_alloc (

ucp_worker_h worker)

Parameters

in worker UCP worker.

Returns

Error code as defined by ucs_status_t

This routine creates request which may be used in functions ucp_tag_send_nbx, ucp_tag_recv_nbx, etc. The
application is responsible for releasing the handle using the ucp_request_free routine

6.1.7.5.23 ucp_request_is_completed()

int ucp_request_is_completed (

void ∗ request)

Deprecated Replaced by ucp_request_test.

6.1.7.5.24 ucp_put()

ucs_status_t ucp_put (

ucp_ep_h ep,

const void ∗ buffer,

size_t length,

uint64_t remote_addr,

ucp_rkey_h rkey)

Deprecated Replaced by ucp_put_nb. The following example implements the same functionality using ucp_put_nb
:

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 107

void empty_callback(void *request, ucs_status_t status)
{
}

ucs_status_t put(ucp_ep_h ep, const void *buffer, size_t length,
uint64_t remote_addr, ucp_rkey_h rkey)

{
void *request = ucp_put_nb(ep, buffer, length, remote_addr, rkey,

empty_callback),
if (request == NULL) {

return UCS_OK;
} else if (UCS_PTR_IS_ERR(request)) {

return UCS_PTR_STATUS(request);
} else {

ucs_status_t status;
do {

ucp_worker_progress(worker);
status = ucp_request_check_status(request);

} while (status == UCS_INPROGRESS);
ucp_request_release(request);
return status;

}
}

This routine stores contiguous block of data that is described by the local address buffer in the remote contiguous
memory region described by remote_addr address and the memory handle rkey. The routine returns when it is safe
to reuse the source address buffer.

Parameters

in ep Remote endpoint handle.

in buffer Pointer to the local source address.
in length Length of the data (in bytes) stored under the source address.

in remote_addr Pointer to the destination remote address to write to.
in rkey Remote memory key associated with the remote address.

Returns

Error code as defined by ucs_status_t

6.1.7.5.25 ucp_get()

ucs_status_t ucp_get (

ucp_ep_h ep,

void ∗ buffer,

size_t length,

uint64_t remote_addr,

ucp_rkey_h rkey)

Deprecated Replaced by ucp_get_nb.

See also

ucp_put.

This routine loads contiguous block of data that is described by the remote address remote_addr and the
memory handle rkey in the local contiguous memory region described by buffer address. The routine returns when
remote data is loaded and stored under the local address buffer.

Parameters

in ep Remote endpoint handle.

in buffer Pointer to the local source address.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

108 Module Documentation

Parameters

in length Length of the data (in bytes) stored under the source address.

in remote_addr Pointer to the destination remote address to write to.
in rkey Remote memory key associated with the remote address.

Returns

Error code as defined by ucs_status_t

6.1.7.5.26 ucp_atomic_add32()

ucs_status_t ucp_atomic_add32 (

ucp_ep_h ep,

uint32_t add,

uint64_t remote_addr,

ucp_rkey_h rkey)

Deprecated Replaced by ucp_atomic_post with opcode UCP_ATOMIC_POST_OP_ADD.

See also

ucp_put.

This routine performs an add operation on a 32 bit integer value atomically. The remote integer value is described by
the combination of the remote memory address remote_addr and the remote memory handle rkey. The add value
is the value that is used for the add operation. When the operation completes the sum of the original remote value
and the operand value (add) is stored in remote memory. The call to the routine returns immediately, independent
of operation completion.

Note

The remote address must be aligned to 32 bit.

Parameters

in ep Remote endpoint handle.

in add Value to add.
in remote_addr Pointer to the destination remote address of the atomic variable.
in rkey Remote memory key associated with the remote address.

Returns

Error code as defined by ucs_status_t

6.1.7.5.27 ucp_atomic_add64()

ucs_status_t ucp_atomic_add64 (

ucp_ep_h ep,

uint64_t add,

uint64_t remote_addr,

ucp_rkey_h rkey)

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 109

Deprecated Replaced by ucp_atomic_post with opcode UCP_ATOMIC_POST_OP_ADD.

See also

ucp_put.

This routine performs an add operation on a 64 bit integer value atomically. The remote integer value is described by
the combination of the remote memory address remote_addr and the remote memory handle rkey. The add value
is the value that is used for the add operation. When the operation completes the sum of the original remote value
and the operand value (add) is stored in remote memory. The call to the routine returns immediately, independent
of operation completion.

Note

The remote address must be aligned to 64 bit.

Parameters

in ep Remote endpoint handle.

in add Value to add.
in remote_addr Pointer to the destination remote address of the atomic variable.
in rkey Remote memory key associated with the remote address.

Returns

Error code as defined by ucs_status_t

6.1.7.5.28 ucp_atomic_fadd32()

ucs_status_t ucp_atomic_fadd32 (

ucp_ep_h ep,

uint32_t add,

uint64_t remote_addr,

ucp_rkey_h rkey,

uint32_t ∗ result)

Deprecated Replaced by ucp_atomic_fetch_nb with opcode UCP_ATOMIC_FETCH_OP_FADD.

See also

ucp_put.

This routine performs an add operation on a 32 bit integer value atomically. The remote integer value is described by
the combination of the remote memory address remote_addr and the remote memory handle rkey. The add value
is the value that is used for the add operation. When the operation completes, the original remote value is stored
in the local memory result, and the sum of the original remote value and the operand value is stored in remote
memory. The call to the routine returns when the operation is completed and the result value is updated.

Note

The remote address must be aligned to 32 bit.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

110 Module Documentation

Parameters

in ep Remote endpoint handle.

in add Value to add.
in remote_addr Pointer to the destination remote address of the atomic variable.
in rkey Remote memory key associated with the remote address.

out result Pointer to the address that is used to store the previous value of the atomic variable
described by the remote_addr

Returns

Error code as defined by ucs_status_t

6.1.7.5.29 ucp_atomic_fadd64()

ucs_status_t ucp_atomic_fadd64 (

ucp_ep_h ep,

uint64_t add,

uint64_t remote_addr,

ucp_rkey_h rkey,

uint64_t ∗ result)

Deprecated Replaced by ucp_atomic_fetch_nb with opcode UCP_ATOMIC_FETCH_OP_FADD.

See also

ucp_put.

This routine performs an add operation on a 64 bit integer value atomically. The remote integer value is described by
the combination of the remote memory address remote_addr and the remote memory handle rkey. The add value
is the value that is used for the add operation. When the operation completes, the original remote value is stored
in the local memory result, and the sum of the original remote value and the operand value is stored in remote
memory. The call to the routine returns when the operation is completed and the result value is updated.

Note

The remote address must be aligned to 64 bit.

Parameters

in ep Remote endpoint handle.

in add Value to add.
in remote_addr Pointer to the destination remote address of the atomic variable.
in rkey Remote memory key associated with the remote address.

out result Pointer to the address that is used to store the previous value of the atomic variable
described by the remote_addr

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 111

Returns

Error code as defined by ucs_status_t

6.1.7.5.30 ucp_atomic_swap32()

ucs_status_t ucp_atomic_swap32 (

ucp_ep_h ep,

uint32_t swap,

uint64_t remote_addr,

ucp_rkey_h rkey,

uint32_t ∗ result)

Deprecated Replaced by ucp_atomic_fetch_nb with opcode UCP_ATOMIC_FETCH_OP_SWAP.

See also

ucp_put.

This routine swaps a 32 bit value between local and remote memory. The remote value is described by the com-
bination of the remote memory address remote_addr and the remote memory handle rkey. The swap value is the
value that is used for the swap operation. When the operation completes, the remote value is stored in the local
memory result, and the operand value (swap) is stored in remote memory. The call to the routine returns when the
operation is completed and the result value is updated.

Note

The remote address must be aligned to 32 bit.

Parameters

in ep Remote endpoint handle.

in swap Value to swap.

in remote_addr Pointer to the destination remote address of the atomic variable.
in rkey Remote memory key associated with the remote address.

out result Pointer to the address that is used to store the previous value of the atomic variable
described by the remote_addr

Returns

Error code as defined by ucs_status_t

6.1.7.5.31 ucp_atomic_swap64()

ucs_status_t ucp_atomic_swap64 (

ucp_ep_h ep,

uint64_t swap,

uint64_t remote_addr,

ucp_rkey_h rkey,

uint64_t ∗ result)

Deprecated Replaced by ucp_atomic_fetch_nb with opcode UCP_ATOMIC_FETCH_OP_SWAP.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

112 Module Documentation

See also

ucp_put.

This routine swaps a 64 bit value between local and remote memory. The remote value is described by the com-
bination of the remote memory address remote_addr and the remote memory handle rkey. The swap value is the
value that is used for the swap operation. When the operation completes, the remote value is stored in the local
memory result, and the operand value (swap) is stored in remote memory. The call to the routine returns when the
operation is completed and the result value is updated.

Note

The remote address must be aligned to 64 bit.

Parameters

in ep Remote endpoint handle.

in swap Value to swap.

in remote_addr Pointer to the destination remote address of the atomic variable.
in rkey Remote memory key associated with the remote address.

out result Pointer to the address that is used to store the previous value of the atomic variable
described by the remote_addr

Returns

Error code as defined by ucs_status_t

6.1.7.5.32 ucp_atomic_cswap32()

ucs_status_t ucp_atomic_cswap32 (

ucp_ep_h ep,

uint32_t compare,

uint32_t swap,

uint64_t remote_addr,

ucp_rkey_h rkey,

uint32_t ∗ result)

Deprecated Replaced by ucp_atomic_fetch_nb with opcode UCP_ATOMIC_FETCH_OP_CSWAP.

See also

ucp_put.

This routine conditionally swaps a 32 bit value between local and remote memory. The swap occurs only if the con-
dition value (continue) is equal to the remote value, otherwise the remote memory is not modified. The remote value
is described by the combination of the remote memory address remote_addr and the remote memory handle
rkey. The swap value is the value that is used to update the remote memory if the condition is true. The call to the
routine returns when the operation is completed and the result value is updated.

Note

The remote address must be aligned to 32 bit.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 113

Parameters

in ep Remote endpoint handle.

in compare Value to compare to.

in swap Value to swap.

in remote_addr Pointer to the destination remote address of the atomic variable.
in rkey Remote memory key associated with the remote address.

out result Pointer to the address that is used to store the previous value of the atomic variable
described by the remote_addr

Returns

Error code as defined by ucs_status_t

6.1.7.5.33 ucp_atomic_cswap64()

ucs_status_t ucp_atomic_cswap64 (

ucp_ep_h ep,

uint64_t compare,

uint64_t swap,

uint64_t remote_addr,

ucp_rkey_h rkey,

uint64_t ∗ result)

Deprecated Replaced by ucp_atomic_fetch_nb with opcode UCP_ATOMIC_FETCH_OP_CSWAP.

See also

ucp_put.

This routine conditionally swaps a 64 bit value between local and remote memory. The swap occurs only if the con-
dition value (continue) is equal to the remote value, otherwise the remote memory is not modified. The remote value
is described by the combination of the remote memory address remote_addr and the remote memory handle
rkey. The swap value is the value that is used to update the remote memory if the condition is true. The call to the
routine returns when the operation is completed and the result value is updated.

Note

The remote address must be aligned to 64 bit.

Parameters

in ep Remote endpoint handle.

in compare Value to compare to.

in swap Value to swap.

in remote_addr Pointer to the destination remote address of the atomic variable.
in rkey Remote memory key associated with the remote address.

out result Pointer to the address that is used to store the previous value of the atomic variable
described by the remote_addr

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

114 Module Documentation

Returns

Error code as defined by ucs_status_t

6.1.7.5.34 ucp_am_send_nb()

ucs_status_ptr_t ucp_am_send_nb (

ucp_ep_h ep,

uint16_t id,

const void ∗ buffer,

size_t count,

ucp_datatype_t datatype,

ucp_send_callback_t cb,

unsigned flags)

Deprecated Use ucp_am_send_nbx instead.

This routine sends an Active Message to an ep. It does not support CUDA memory.

Parameters

in ep UCP endpoint where the Active Message will be run.

in id Active Message id. Specifies which registered callback to run.

in buffer Pointer to the data to be sent to the target node of the Active Message.

in count Number of elements to send.
in datatype Datatype descriptor for the elements in the buffer.

in cb Callback that is invoked upon completion of the data transfer if it is not completed immediately.

in flags Operation flags as defined by ucp_send_am_flags.

Returns

NULL Active Message was sent immediately.

UCS_PTR_IS_ERR(_ptr) Error sending Active Message.

otherwise Pointer to request, and Active Message is known to be completed after cb is run.

6.1.7.5.35 ucp_stream_send_nb()

ucs_status_ptr_t ucp_stream_send_nb (

ucp_ep_h ep,

const void ∗ buffer,

size_t count,

ucp_datatype_t datatype,

ucp_send_callback_t cb,

unsigned flags)

Deprecated Use ucp_stream_send_nbx instead.

This routine sends data that is described by the local address buffer, size count, and datatype object to the destina-
tion endpoint ep. The routine is non-blocking and therefore returns immediately, however the actual send operation
may be delayed. The send operation is considered completed when it is safe to reuse the source buffer. If the send
operation is completed immediately the routine returns UCS_OK and the callback function cb is not invoked. If the
operation is not completed immediately and no error reported, then the UCP library will schedule invocation of the
callback cb upon completion of the send operation. In other words, the completion of the operation will be signaled
either by the return code or by the callback.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 115

Note

The user should not modify any part of the buffer after this operation is called, until the operation completes.

Parameters

in ep Destination endpoint handle.

in buffer Pointer to the message buffer (payload).

in count Number of elements to send.
in datatype Datatype descriptor for the elements in the buffer.

in cb Callback function that is invoked whenever the send operation is completed. It is important
to note that the callback is only invoked in the event that the operation cannot be completed
in place.

in flags Reserved for future use.

Returns

NULL - The send operation was completed immediately.

UCS_PTR_IS_ERR(_ptr) - The send operation failed.

otherwise - Operation was scheduled for send and can be completed in any point in time. The request handle
is returned to the application in order to track progress of the message. The application is responsible for
releasing the handle using ucp_request_free routine.

6.1.7.5.36 ucp_stream_recv_nb()

ucs_status_ptr_t ucp_stream_recv_nb (

ucp_ep_h ep,

void ∗ buffer,

size_t count,

ucp_datatype_t datatype,

ucp_stream_recv_callback_t cb,

size_t ∗ length,

unsigned flags)

Deprecated Use ucp_stream_recv_nbx instead.

This routine receives data that is described by the local address buffer, size count, and datatype object on the
endpoint ep. The routine is non-blocking and therefore returns immediately. The receive operation is considered
complete when the message is delivered to the buffer. If data is not immediately available, the operation will be
scheduled for receive and a request handle will be returned. In order to notify the application about completion of
a scheduled receive operation, the UCP library will invoke the call-back cb when data is in the receive buffer and
ready for application access. If the receive operation cannot be started, the routine returns an error.

Parameters

in ep UCP endpoint that is used for the receive operation.

in buffer Pointer to the buffer to receive the data.
in count Number of elements to receive into buffer.
in datatype Datatype descriptor for the elements in the buffer.

in cb Callback function that is invoked whenever the receive operation is completed and the
data is ready in the receive buffer. It is important to note that the call-back is only invoked
in a case when the operation cannot be completed immediately.

out length Size of the received data in bytes. The value is valid only if return code is UCS_OK.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

116 Module Documentation

Note

The amount of data received, in bytes, is always an integral multiple of the datatype size.

Parameters

in flags Flags defined in ucp_stream_recv_flags_t.

Returns

NULL - The receive operation was completed immediately.

UCS_PTR_IS_ERR(_ptr) - The receive operation failed.

otherwise - Operation was scheduled for receive. A request handle is returned to the application in order
to track progress of the operation. The application is responsible for releasing the handle by calling the
ucp_request_free routine.

6.1.7.5.37 ucp_tag_send_nb()

ucs_status_ptr_t ucp_tag_send_nb (

ucp_ep_h ep,

const void ∗ buffer,

size_t count,

ucp_datatype_t datatype,

ucp_tag_t tag,

ucp_send_callback_t cb)

Deprecated Use ucp_tag_send_nbx instead.

This routine sends a messages that is described by the local address buffer, size count, and datatype object to the
destination endpoint ep. Each message is associated with a tag value that is used for message matching on the
receiver. The routine is non-blocking and therefore returns immediately, however the actual send operation may
be delayed. The send operation is considered completed when it is safe to reuse the source buffer. If the send
operation is completed immediately the routine return UCS_OK and the call-back function cb is not invoked. If
the operation is not completed immediately and no error reported then the UCP library will schedule to invoke the
call-back cb whenever the send operation will be completed. In other words, the completion of a message can be
signaled by the return code or the call-back.

Note

The user should not modify any part of the buffer after this operation is called, until the operation completes.

Parameters

in ep Destination endpoint handle.

in buffer Pointer to the message buffer (payload).

in count Number of elements to send
in datatype Datatype descriptor for the elements in the buffer.

in tag Message tag.

in cb Callback function that is invoked whenever the send operation is completed. It is important
to note that the call-back is only invoked in a case when the operation cannot be completed
in place.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 117

Returns

NULL - The send operation was completed immediately.

UCS_PTR_IS_ERR(_ptr) - The send operation failed.

otherwise - Operation was scheduled for send and can be completed in any point in time. The request handle
is returned to the application in order to track progress of the message. The application is responsible for
releasing the handle using ucp_request_free() routine.

6.1.7.5.38 ucp_tag_send_nbr()

ucs_status_t ucp_tag_send_nbr (

ucp_ep_h ep,

const void ∗ buffer,

size_t count,

ucp_datatype_t datatype,

ucp_tag_t tag,

void ∗ req)

Deprecated Use ucp_tag_send_nbx with the flag UCP_OP_ATTR_FIELD_REQUEST instead.

This routine provides a convenient and efficient way to implement a blocking send pattern. It also completes re-
quests faster than ucp_tag_send_nb() because:

• it always uses eager protocol to send data up to the rendezvous threshold.

• its rendezvous threshold is higher than the one used by the ucp_tag_send_nb(). The threshold is controlled
by the UCX_SEND_NBR_RNDV_THRESH environment variable.

• its request handling is simpler. There is no callback and no need to allocate and free requests. In fact request
can be allocated by caller on the stack.

This routine sends a messages that is described by the local address buffer, size count, and datatype object to the
destination endpoint ep. Each message is associated with a tag value that is used for message matching on the
receiver.

The routine is non-blocking and therefore returns immediately, however the actual send operation may be delayed.
The send operation is considered completed when it is safe to reuse the source buffer. If the send operation is
completed immediately the routine returns UCS_OK.

If the operation is not completed immediately and no error reported then the UCP library will fill a user provided req
and return UCS_INPROGRESS status. In order to monitor completion of the operation ucp_request_check_status()
should be used.

Following pseudo code implements a blocking send function:
MPI_send(...)
{

char *request;
ucs_status_t status;

// allocate request on the stack
// ucp_context_query() was used to get ucp_request_size
request = alloca(ucp_request_size);

// note: make sure that there is enough memory before the
// request handle
status = ucp_tag_send_nbr(ep, ..., request + ucp_request_size);
if (status != UCS_INPROGRESS) {

return status;
}

do {
ucp_worker_progress(worker);
status = ucp_request_check_status(request + ucp_request_size);

} while (status == UCS_INPROGRESS);

return status;
}

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

118 Module Documentation

Note

The user should not modify any part of the buffer after this operation is called, until the operation completes.

Parameters

in ep Destination endpoint handle.

in buffer Pointer to the message buffer (payload).

in count Number of elements to send
in datatype Datatype descriptor for the elements in the buffer.

in tag Message tag.

in req Request handle allocated by the user. There should be at least UCP request size bytes of
available space before the req. The size of UCP request can be obtained by
ucp_context_query function.

Returns

UCS_OK - The send operation was completed immediately.

UCS_INPROGRESS - The send was not completed and is in progress. ucp_request_check_status() should
be used to monitor req status.

Error code as defined by ucs_status_t

6.1.7.5.39 ucp_tag_send_sync_nb()

ucs_status_ptr_t ucp_tag_send_sync_nb (

ucp_ep_h ep,

const void ∗ buffer,

size_t count,

ucp_datatype_t datatype,

ucp_tag_t tag,

ucp_send_callback_t cb)

Deprecated Use ucp_tag_send_sync_nbx instead.

Same as ucp_tag_send_nb, except the request completes only after there is a remote tag match on the message
(which does not always mean the remote receive has been completed). This function never completes ¨in-place¨,
and always returns a request handle.

Note

The user should not modify any part of the buffer after this operation is called, until the operation completes.

Returns UCS_ERR_UNSUPPORTED if UCP_ERR_HANDLING_MODE_PEER is enabled. This is a tempo-
rary implementation-related constraint that will be addressed in future releases.

Parameters

in ep Destination endpoint handle.

in buffer Pointer to the message buffer (payload).

in count Number of elements to send
in datatype Datatype descriptor for the elements in the buffer.

in tag Message tag.

in cb Callback function that is invoked whenever the send operation is completed.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 119

Returns

UCS_PTR_IS_ERR(_ptr) - The send operation failed.

otherwise - Operation was scheduled for send and can be completed in any point in time. The request handle
is returned to the application in order to track progress of the message. The application is responsible for
releasing the handle using ucp_request_free() routine.

6.1.7.5.40 ucp_tag_recv_nb()

ucs_status_ptr_t ucp_tag_recv_nb (

ucp_worker_h worker,

void ∗ buffer,

size_t count,

ucp_datatype_t datatype,

ucp_tag_t tag,

ucp_tag_t tag_mask,

ucp_tag_recv_callback_t cb)

Deprecated Use ucp_tag_recv_nbx instead.

This routine receives a message that is described by the local address buffer, size count, and datatype object on
the worker. The tag value of the receive message has to match the tag and tag_mask values, where the tag_mask
indicates which bits of the tag have to be matched. The routine is non-blocking and therefore returns immediately.
The receive operation is considered completed when the message is delivered to the buffer. In order to notify the
application about completion of the receive operation the UCP library will invoke the call-back cb when the received
message is in the receive buffer and ready for application access. If the receive operation cannot be stated the
routine returns an error.

Note

This routine cannot return UCS_OK. It always returns a request handle or an error.

Parameters

in worker UCP worker that is used for the receive operation.

in buffer Pointer to the buffer to receive the data.
in count Number of elements to receive
in datatype Datatype descriptor for the elements in the buffer.

in tag Message tag to expect.

in tag_mask Bit mask that indicates the bits that are used for the matching of the incoming tag against
the expected tag.

in cb Callback function that is invoked whenever the receive operation is completed and the data
is ready in the receive buffer.

Returns

UCS_PTR_IS_ERR(_ptr) - The receive operation failed.

otherwise - Operation was scheduled for receive. The request handle is returned to the application in
order to track progress of the operation. The application is responsible for releasing the handle using
ucp_request_free() routine.

6.1.7.5.41 ucp_tag_recv_nbr()

ucs_status_t ucp_tag_recv_nbr (

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

120 Module Documentation

ucp_worker_h worker,

void ∗ buffer,

size_t count,

ucp_datatype_t datatype,

ucp_tag_t tag,

ucp_tag_t tag_mask,

void ∗ req)

Deprecated Use ucp_tag_recv_nbx with the flag UCP_OP_ATTR_FIELD_REQUEST instead.

This routine receives a message that is described by the local address buffer, size count, and datatype object on
the worker. The tag value of the receive message has to match the tag and tag_mask values, where the tag_mask
indicates which bits of the tag have to be matched. The routine is non-blocking and therefore returns immediately.
The receive operation is considered completed when the message is delivered to the buffer. In order to monitor
completion of the operation ucp_request_check_status or ucp_tag_recv_request_test should be used.

Parameters

in worker UCP worker that is used for the receive operation.

in buffer Pointer to the buffer to receive the data.
in count Number of elements to receive
in datatype Datatype descriptor for the elements in the buffer.

in tag Message tag to expect.

in tag_mask Bit mask that indicates the bits that are used for the matching of the incoming tag against
the expected tag.

in req Request handle allocated by the user. There should be at least UCP request size bytes of
available space before the req. The size of UCP request can be obtained by
ucp_context_query function.

Returns

Error code as defined by ucs_status_t

6.1.7.5.42 ucp_tag_msg_recv_nb()

ucs_status_ptr_t ucp_tag_msg_recv_nb (

ucp_worker_h worker,

void ∗ buffer,

size_t count,

ucp_datatype_t datatype,

ucp_tag_message_h message,

ucp_tag_recv_callback_t cb)

Deprecated Use ucp_tag_recv_nbx instead.

This routine receives a message that is described by the local address buffer, size count, message handle, and
datatype object on the worker. The message handle can be obtained by calling the ucp_tag_probe_nb() routine.
The ucp_tag_msg_recv_nb() routine is non-blocking and therefore returns immediately. The receive operation is
considered completed when the message is delivered to the buffer. In order to notify the application about comple-
tion of the receive operation the UCP library will invoke the call-back cb when the received message is in the receive
buffer and ready for application access. If the receive operation cannot be started the routine returns an error.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 121

Parameters

in worker UCP worker that is used for the receive operation.

in buffer Pointer to the buffer that will receive the data.
in count Number of elements to receive
in datatype Datatype descriptor for the elements in the buffer.

in message Message handle.

in cb Callback function that is invoked whenever the receive operation is completed and the data
is ready in the receive buffer.

Returns

UCS_PTR_IS_ERR(_ptr) - The receive operation failed.

otherwise - Operation was scheduled for receive. The request handle is returned to the application in
order to track progress of the operation. The application is responsible for releasing the handle using
ucp_request_free() routine.

6.1.7.5.43 ucp_put_nbi()

ucs_status_t ucp_put_nbi (

ucp_ep_h ep,

const void ∗ buffer,

size_t length,

uint64_t remote_addr,

ucp_rkey_h rkey)

Deprecated Use ucp_put_nbx without passing the flag UCP_OP_ATTR_FIELD_CALLBACK instead. If a request
pointer is returned, release it immediately by ucp_request_free.

This routine initiates a storage of contiguous block of data that is described by the local address buffer in the
remote contiguous memory region described by remote_addr address and the memoryhandle¨ @a rkey. The routine
returns immediately and @b does @b not guarantee re-usability of the source address @e buffer. If the operation is
completed immediately the routine return UCS_OK, otherwise UCS_INPROGRESS or an error is returned to user.
@note A user can use @ref ucp_worker_flush_nb ¨ucp_worker_flush_nb()" in order to guarantee re-usability of the
source address buffer.

Parameters

in ep Remote endpoint handle.

in buffer Pointer to the local source address.
in length Length of the data (in bytes) stored under the source address.

in remote_addr Pointer to the destination remote memory address to write to.

in rkey Remote memory key associated with the remote memory address.

Returns

Error code as defined by ucs_status_t

6.1.7.5.44 ucp_put_nb()

ucs_status_ptr_t ucp_put_nb (

ucp_ep_h ep,

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

122 Module Documentation

const void ∗ buffer,

size_t length,

uint64_t remote_addr,

ucp_rkey_h rkey,

ucp_send_callback_t cb)

Deprecated Use ucp_put_nbx instead.

This routine initiates a storage of contiguous block of data that is described by the local address buffer in the
remote contiguous memory region described by remote_addr address and the memoryhandle¨ @a rkey. The routine
returns immediately and @b does @b not guarantee re-usability of the source address @e buffer. If the operation
is completed immediately the routine return UCS_OK, otherwise UCS_INPROGRESS or an error is returned to
user. If the put operation completes immediately, the routine returns UCS_OK and the call-back routine @a cb is
@b not invoked. If the operation is @b not completed immediately and no error is reported, then the UCP library
will schedule invocation of the call-back routine @a cb upon completion of the put operation. In other words, the
completion of a put operation can be signaled by the return code or execution of the call-back. @note A user can
use @ref ucp_worker_flush_nb ¨ucp_worker_flush_nb()¨ in order to guarantee re-usability of the source address @e
buffer. @param [in] ep Remote endpoint handle. @param [in] buffer Pointer to the local source address. @param
[in] length Length of the data (in bytes) stored under the source address. @param [in] remote_addr Pointer to the
destination remote memory address to write to. @param [in] rkey Remote memory key associated with the remote
memory address. @param [in] cb Call-back function that is invoked whenever the put operation is completed and
the local buffer can be modified. Does not guarantee remote completion. @return NULL - The operation was
completed immediately. @return UCS_PTR_IS_ERR(_ptr) - The operation failed. @return otherwise - Operation
was scheduled and can be completed at any point in time. The request handle is returned to the application in order
to track progress of the operation. The application is responsible for releasing the handle using @ref ucp_request←↩

_free ¨ucp_request_free()" routine.

6.1.7.5.45 ucp_get_nbi()

ucs_status_t ucp_get_nbi (

ucp_ep_h ep,

void ∗ buffer,

size_t length,

uint64_t remote_addr,

ucp_rkey_h rkey)

Deprecated Use ucp_get_nbx without passing the flag UCP_OP_ATTR_FIELD_CALLBACK instead. If a request
pointer is returned, release it immediately by ucp_request_free.

This routine initiate a load of contiguous block of data that is described by the remote memory address remote_←↩

addr and the memory handle rkey in the local contiguous memory region described by buffer address. The routine
returns immediately and does not guarantee that remote data is loaded and stored under the local address buffer.

Note

A user can use ucp_worker_flush_nb() in order guarantee that remote data is loaded and stored under the
local address buffer.

Parameters

in ep Remote endpoint handle.

in buffer Pointer to the local destination address.
in length Length of the data (in bytes) stored under the destination address.

in remote_addr Pointer to the source remote memory address to read from.

in rkey Remote memory key associated with the remote memory address.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 123

Returns

Error code as defined by ucs_status_t

6.1.7.5.46 ucp_get_nb()

ucs_status_ptr_t ucp_get_nb (

ucp_ep_h ep,

void ∗ buffer,

size_t length,

uint64_t remote_addr,

ucp_rkey_h rkey,

ucp_send_callback_t cb)

Deprecated Use ucp_get_nbx instead.

This routine initiates a load of a contiguous block of data that is described by the remote memory address remote←↩

_addr and the memory handle rkey in the local contiguous memory region described by buffer address. The routine
returns immediately and does not guarantee that remote data is loaded and stored under the local address buffer.
If the operation is completed immediately the routine return UCS_OK, otherwise UCS_INPROGRESS or an error is
returned to user. If the get operation completes immediately, the routine returns UCS_OK and the call-back routine
cb is not invoked. If the operation is not completed immediately and no error is reported, then the UCP library will
schedule invocation of the call-back routine cb upon completion of the get operation. In other words, the completion
of a get operation can be signaled by the return code or execution of the call-back.

Note

A user can use ucp_worker_flush_nb() in order to guarantee re-usability of the source address buffer.

Parameters

in ep Remote endpoint handle.

in buffer Pointer to the local destination address.
in length Length of the data (in bytes) stored under the destination address.

in remote_addr Pointer to the source remote memory address to read from.

in rkey Remote memory key associated with the remote memory address.

in cb Call-back function that is invoked whenever the get operation is completed and the data
is visible to the local process.

Returns

NULL - The operation was completed immediately.

UCS_PTR_IS_ERR(_ptr) - The operation failed.

otherwise - Operation was scheduled and can be completed at any point in time. The request handle is
returned to the application in order to track progress of the operation. The application is responsible for
releasing the handle using ucp_request_free() routine.

6.1.7.5.47 ucp_atomic_post()

ucs_status_t ucp_atomic_post (

ucp_ep_h ep,

ucp_atomic_post_op_t opcode,

uint64_t value,

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

124 Module Documentation

size_t op_size,

uint64_t remote_addr,

ucp_rkey_h rkey)

Deprecated Use ucp_atomic_op_nbx without the flag UCP_OP_ATTR_FIELD_REPLY_BUFFER instead.

This routine posts an atomic memory operation to a remote value. The remote value is described by the combination
of the remote memory address remote_addr and the remote memory handle rkey. Return from the function does
not guarantee completion. A user must call ucp_ep_flush_nb or ucp_worker_flush_nb to guarantee that the remote
value has been updated.

Parameters

in ep UCP endpoint.

in opcode One of ucp_atomic_post_op_t.

in value Source operand for the atomic operation.

in op_size Size of value in bytes

in remote_addr Remote address to operate on.

in rkey Remote key handle for the remote memory address.

Returns

Error code as defined by ucs_status_t

6.1.7.5.48 ucp_atomic_fetch_nb()

ucs_status_ptr_t ucp_atomic_fetch_nb (

ucp_ep_h ep,

ucp_atomic_fetch_op_t opcode,

uint64_t value,

void ∗ result,

size_t op_size,

uint64_t remote_addr,

ucp_rkey_h rkey,

ucp_send_callback_t cb)

Deprecated Use ucp_atomic_op_nbx with the flag UCP_OP_ATTR_FIELD_REPLY_BUFFER instead.

This routine will post an atomic fetch operation to remote memory. The remote value is described by the combination
of the remote memory address remote_addr and the remote memory handle rkey. The routine is non-blocking
and therefore returns immediately. However the actual atomic operation may be delayed. The atomic operation
is not considered complete until the values in remote and local memory are completed. If the atomic operation
completes immediately, the routine returns UCS_OK and the call-back routine cb is not invoked. If the operation is
not completed immediately and no error is reported, then the UCP library will schedule invocation of the call-back
routine cb upon completion of the atomic operation. In other words, the completion of an atomic operation can be
signaled by the return code or execution of the call-back.

Note

The user should not modify any part of the result after this operation is called, until the operation completes.

Parameters

in ep UCP endpoint.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 125

Parameters

in opcode One of ucp_atomic_fetch_op_t.

in value Source operand for atomic operation. In the case of CSWAP this is the conditional
for the swap. For SWAP this is the value to be placed in remote memory.

in,out result Local memory address to store resulting fetch to. In the case of CSWAP the value
in result will be swapped into the remote_addr if the condition is true.

in op_size Size of value in bytes and pointer type for result

in remote_addr Remote address to operate on.

in rkey Remote key handle for the remote memory address.

in cb Call-back function that is invoked whenever the send operation is completed. It is
important to note that the call-back function is only invoked in a case when the
operation cannot be completed in place.

Returns

NULL - The operation was completed immediately.

UCS_PTR_IS_ERR(_ptr) - The operation failed.

otherwise - Operation was scheduled and can be completed at any point in time. The request handle is
returned to the application in order to track progress of the operation. The application is responsible for
releasing the handle using ucp_request_free() routine.

6.1.8 UCP Configuration

Data Structures

• struct ucp_params

Tuning parameters for UCP library. More...

Typedefs

• typedef struct ucp_params ucp_params_t

Tuning parameters for UCP library.

• typedef struct ucp_config ucp_config_t

UCP configuration descriptor.

Functions

• ucs_status_t ucp_config_read (const char ∗env_prefix, const char ∗filename, ucp_config_t ∗∗config_p)

Read UCP configuration descriptor.

• void ucp_config_release (ucp_config_t ∗config)

Release configuration descriptor.

• ucs_status_t ucp_config_modify (ucp_config_t ∗config, const char ∗name, const char ∗value)

Modify context configuration.

• void ucp_config_print (const ucp_config_t ∗config, FILE ∗stream, const char ∗title, ucs_config_print_flags_t
print_flags)

Print configuration information.

6.1.8.1 Detailed Description

This section describes routines for configuration of the UCP network layer

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

126 Module Documentation

6.1.8.2 Data Structure Documentation

6.1.8.2.1 struct ucp_params

The structure defines the parameters that are used for UCP library tuning during UCP library initialization.

Note

UCP library implementation uses the features parameter to optimize the library functionality that minimize
memory footprint. For example, if the application does not require send/receive semantics UCP library may
avoid allocation of expensive resources associated with send/receive queues.

Examples

ucp_client_server.c, and ucp_hello_world.c.

Data Fields

uint64_t field_mask Mask of valid fields in this structure, using bits from
ucp_params_field. Fields not specified in this
mask will be ignored. Provides ABI compatibility
with respect to adding new fields.

uint64_t features UCP features that are used for library initialization.
It is recommended for applications only to request
the features that are required for an optimal
functionality This field must be specified.

size_t request_size The size of a reserved space in a non-blocking
requests. Typically applications use this space for
caching own structures in order to avoid costly
memory allocations, pointer dereferences, and
cache misses. For example, MPI implementation
can use this memory for caching MPI descriptors
This field defaults to 0 if not specified.

ucp_request_init_callback_t request_init Pointer to a routine that is used for the request
initialization. This function will be called only on the
very first time a request memory is initialized, and
may not be called again if a request is reused. If a
request should be reset before the next reuse, it
can be done before calling ucp_request_free.
NULL can be used if no such is function required,
which is also the default if this field is not specified
by field_mask.

ucp_request_cleanup_callback_t request_cleanup Pointer to a routine that is responsible for final
cleanup of the memory associated with the
request. This routine may not be called every time
a request is released. For some implementations,
the cleanup call may be delayed and only invoked
at ucp_worker_destroy.
NULL can be used if no such function is required,
which is also the default if this field is not specified
by field_mask.

uint64_t tag_sender_mask Mask which specifies particular bits of the tag
which can uniquely identify the sender (UCP
endpoint) in tagged operations. This field defaults
to 0 if not specified.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 127

Data Fields

int mt_workers_shared This flag indicates if this context is shared by
multiple workers from different threads. If so, this
context needs thread safety support; otherwise,
the context does not need to provide thread safety.
For example, if the context is used by single
worker, and that worker is shared by multiple
threads, this context does not need thread safety; if
the context is used by worker 1 and worker 2, and
worker 1 is used by thread 1 and worker 2 is used
by thread 2, then this context needs thread safety.
Note that actual thread mode may be different from
mode passed to ucp_init. To get actual thread
mode use ucp_context_query.

size_t estimated_num_eps An optimization hint of how many endpoints will be
created on this context. For example, when used
from MPI or SHMEM libraries, this number will
specify the number of ranks (or processing
elements) in the job. Does not affect semantics,
but only transport selection criteria and the
resulting performance. The value can be also set
by UCX_NUM_EPS environment variable. In such
case it will override the number of endpoints set by
estimated_num_eps

size_t estimated_num_ppn An optimization hint for a single node. For
example, when used from MPI or OpenSHMEM
libraries, this number will specify the number of
Processes Per Node (PPN) in the job. Does not
affect semantics, only transport selection criteria
and the resulting performance. The value can be
also set by the UCX_NUM_PPN environment
variable, which will override the number of
endpoints set by estimated_num_ppn

const char ∗ name Tracing and analysis tools can identify the context
using this name. To retrieve the context's name,
use ucp_context_query, as the name you supply
may be changed by UCX under some
circumstances, e.g. a name conflict. This field is
only assigned if you set
UCP_PARAM_FIELD_NAME in the field mask. If
not, then a default unique name will be created for
you.

6.1.8.3 Typedef Documentation

6.1.8.3.1 ucp_params_t

typedef struct ucp_params ucp_params_t

The structure defines the parameters that are used for UCP library tuning during UCP library initialization.

Note

UCP library implementation uses the features parameter to optimize the library functionality that minimize
memory footprint. For example, if the application does not require send/receive semantics UCP library may
avoid allocation of expensive resources associated with send/receive queues.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

128 Module Documentation

6.1.8.3.2 ucp_config_t

typedef struct ucp_config ucp_config_t

This descriptor defines the configuration for UCP application context. The configuration is loaded from the run-
time environment (using configuration files of environment variables) using ucp_config_read routine and can be
printed using ucp_config_print routine. In addition, application is responsible to release the descriptor using
ucp_config_release routine.

6.1.8.4 Function Documentation

6.1.8.4.1 ucp_config_read()

ucs_status_t ucp_config_read (

const char ∗ env_prefix,

const char ∗ filename,

ucp_config_t ∗∗ config_p)

The routine fetches the information about UCP library configuration from the run-time environment. Then, the
fetched descriptor is used for UCP library initialization. The Application can print out the descriptor using print
routine. In addition the application is responsible for releasing the descriptor back to the UCP library.

Parameters

in env_prefix If non-NULL, the routine searches for the environment variables that start with
<env_prefix>UCX prefix. Otherwise, the routine searches for the environment variables
that start with UCX_ prefix.

in filename If non-NULL, read configuration from the file defined by filename. If the file does not
exist, it will be ignored and no error reported to the application.

out config_p Pointer to configuration descriptor as defined by ucp_config_t.

Returns

Error code as defined by ucs_status_t

Examples

ucp_hello_world.c.

6.1.8.4.2 ucp_config_release()

void ucp_config_release (

ucp_config_t ∗ config)

The routine releases the configuration descriptor that was allocated through ucp_config_read() routine.

Parameters

out config Configuration descriptor as defined by ucp_config_t.

Examples

ucp_hello_world.c.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 129

6.1.8.4.3 ucp_config_modify()

ucs_status_t ucp_config_modify (

ucp_config_t ∗ config,

const char ∗ name,

const char ∗ value)

The routine changes one configuration setting stored in configuration descriptor.

Parameters

in config Configuration to modify.

in name Configuration variable name.

in value Value to set.

Returns

Error code.

6.1.8.4.4 ucp_config_print()

void ucp_config_print (

const ucp_config_t ∗ config,

FILE ∗ stream,

const char ∗ title,

ucs_config_print_flags_t print_flags)

The routine prints the configuration information that is stored in configuration descriptor.

Parameters

in config Configuration descriptor to print.

in stream Output stream to print the configuration to.

in title Configuration title to print.

in print_flags Flags that control various printing options.

Examples

ucp_hello_world.c.

6.1.9 UCP Data type routines

Data Structures

• struct ucp_dt_iov

Structure for scatter-gather I/O. More...

• struct ucp_generic_dt_ops

UCP generic data type descriptor.

• struct ucp_datatype_attr

UCP datatype attributes. More...

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

130 Module Documentation

Macros

• #define ucp_dt_make_contig(_elem_size) (((ucp_datatype_t)(_elem_size) << UCP_DATATYPE_SHIFT) |
UCP_DATATYPE_CONTIG)

Generate an identifier for contiguous data type.

• #define ucp_dt_make_iov() ((ucp_datatype_t)UCP_DATATYPE_IOV)

Generate an identifier for Scatter-gather IOV data type.

Typedefs

• typedef struct ucp_dt_iov ucp_dt_iov_t

Structure for scatter-gather I/O.

• typedef struct ucp_generic_dt_ops ucp_generic_dt_ops_t

UCP generic data type descriptor.

• typedef struct ucp_datatype_attr ucp_datatype_attr_t

UCP datatype attributes.

Enumerations

• enum ucp_dt_type {
UCP_DATATYPE_CONTIG = 0 , UCP_DATATYPE_STRIDED = 1 , UCP_DATATYPE_IOV = 2 ,
UCP_DATATYPE_GENERIC = 7 ,
UCP_DATATYPE_SHIFT = 3 , UCP_DATATYPE_CLASS_MASK = UCS_MASK(UCP_DATATYPE_SHIFT) }

UCP data type classification.

• enum ucp_datatype_attr_field { UCP_DATATYPE_ATTR_FIELD_PACKED_SIZE = UCS_BIT(0) , UCP_DATATYPE_ATTR_FIELD_BUFFER
= UCS_BIT(1) , UCP_DATATYPE_ATTR_FIELD_COUNT = UCS_BIT(2) }

UCP datatype attributes field mask.

Functions

• ucs_status_t ucp_dt_create_generic (const ucp_generic_dt_ops_t ∗ops, void ∗context, ucp_datatype_t
∗datatype_p)

Create a generic datatype.

• void ucp_dt_destroy (ucp_datatype_t datatype)

Destroy a datatype and release its resources.

• ucs_status_t ucp_dt_query (ucp_datatype_t datatype, ucp_datatype_attr_t ∗attr)

Query attributes of a datatype.

Variables

• void ∗(∗ ucp_generic_dt_ops::start_pack)(void ∗context, const void ∗buffer, size_t count)

Start a packing request.

• void ∗(∗ ucp_generic_dt_ops::start_unpack)(void ∗context, void ∗buffer, size_t count)

Start an unpacking request.

• size_t(∗ ucp_generic_dt_ops::packed_size)(void ∗state)

Get the total size of packed data.

• size_t(∗ ucp_generic_dt_ops::pack)(void ∗state, size_t offset, void ∗dest, size_t max_length)

Pack data.

• ucs_status_t(∗ ucp_generic_dt_ops::unpack)(void ∗state, size_t offset, const void ∗src, size_t length)

Unpack data.

• void(∗ ucp_generic_dt_ops::finish)(void ∗state)

Finish packing/unpacking.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 131

6.1.9.1 Detailed Description

UCP Data type routines

6.1.9.2 Data Structure Documentation

6.1.9.2.1 struct ucp_dt_iov

This structure is used to specify a list of buffers which can be used within a single data transfer function call. This
list should remain valid until the data transfer request is completed.

Note

If length is zero, the memory pointed to by buffer will not be accessed. Otherwise, buffer must point to valid
memory.

Examples

ucp_client_server.c.

Data Fields

void ∗ buffer Pointer to a data buffer
size_t length Length of the buffer in bytes

6.1.9.2.2 struct ucp_datatype_attr

This structure provides attributes of a UCP datatype.

Data Fields

uint64_t field_mask Mask of valid fields in this structure, using bits from ucp_datatype_attr_field.
Fields not specified in this mask will be ignored. Provides ABI compatibility with
respect to adding new fields.

size_t packed_size Packed size of the given datatype. (output parameter)

const void ∗ buffer Pointer to a data buffer of the associated data type. This field is optional. If
UCP_DATATYPE_ATTR_FIELD_BUFFER is not set in field_mask, this field
defaults to NULL.

size_t count Number of elements in buffer. This value is optional. If
UCP_DATATYPE_ATTR_FIELD_COUNT is not set in field_mask, the value of
this field defaults to 1.

6.1.9.3 Macro Definition Documentation

6.1.9.3.1 ucp_dt_make_contig

#define ucp_dt_make_contig(

_elem_size) (((ucp_datatype_t)(_elem_size) << UCP_DATATYPE_SHIFT) | UCP_DATATYPE_CONTIG)

This macro creates an identifier for contiguous datatype that is defined by the size of the basic element.

Parameters

in _elem_size Size of the basic element of the type.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

132 Module Documentation

Returns

Data-type identifier.

Note

In case of partial receive, the buffer will be filled with integral count of elements.

Examples

ucp_client_server.c, and ucp_hello_world.c.

6.1.9.3.2 ucp_dt_make_iov

#define ucp_dt_make_iov() ((ucp_datatype_t)UCP_DATATYPE_IOV)

This macro creates an identifier for datatype of scatter-gather list with multiple pointers

Returns

Data-type identifier.

Note

In the event of partial receive, ucp_dt_iov_t::buffer can be filled with any number of bytes according to its
ucp_dt_iov_t::length.

6.1.9.4 Typedef Documentation

6.1.9.4.1 ucp_dt_iov_t

typedef struct ucp_dt_iov ucp_dt_iov_t

This structure is used to specify a list of buffers which can be used within a single data transfer function call. This
list should remain valid until the data transfer request is completed.

Note

If length is zero, the memory pointed to by buffer will not be accessed. Otherwise, buffer must point to valid
memory.

6.1.9.4.2 ucp_generic_dt_ops_t

typedef struct ucp_generic_dt_ops ucp_generic_dt_ops_t

This structure provides a generic datatype descriptor that is used for definition of application defined datatypes.

Typically, the descriptor is used for an integration with datatype engines implemented within MPI and SHMEM
implementations.

Note

In case of partial receive, any amount of received data is acceptable which matches buffer size.

6.1.9.4.3 ucp_datatype_attr_t

typedef struct ucp_datatype_attr ucp_datatype_attr_t

This structure provides attributes of a UCP datatype.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 133

6.1.9.5 Enumeration Type Documentation

6.1.9.5.1 ucp_dt_type

enum ucp_dt_type

The enumeration list describes the datatypes supported by UCP.

Enumerator

UCP_DATATYPE_CONTIG Contiguous datatype

UCP_DATATYPE_STRIDED Strided datatype

UCP_DATATYPE_IOV Scatter-gather list with multiple pointers

UCP_DATATYPE_GENERIC Generic datatype with user-defined pack/unpack routines

UCP_DATATYPE_SHIFT Number of bits defining the datatype classification

UCP_DATATYPE_CLASS_MASK Data-type class mask

6.1.9.5.2 ucp_datatype_attr_field

enum ucp_datatype_attr_field

The enumeration allows specifying which fields in ucp_datatype_attr_t are present and which datatype attributes
are queried.

Enumerator

UCP_DATATYPE_ATTR_FIELD_PACKED_SIZE ucp_datatype_attr_t::packed_size field is queried.

UCP_DATATYPE_ATTR_FIELD_BUFFER ucp_datatype_attr_t::buffer field is set.

UCP_DATATYPE_ATTR_FIELD_COUNT ucp_datatype_attr_t::count field is set.

6.1.9.6 Function Documentation

6.1.9.6.1 ucp_dt_create_generic()

ucs_status_t ucp_dt_create_generic (

const ucp_generic_dt_ops_t ∗ ops,

void ∗ context,

ucp_datatype_t ∗ datatype_p)

This routine create a generic datatype object. The generic datatype is described by the ops object which provides
a table of routines defining the operations for generic datatype manipulation. Typically, generic datatypes are used
for integration with datatype engines provided with MPI implementations (MPICH, Open MPI, etc). The application
is responsible for releasing the datatype_p object using ucp_dt_destroy() routine.

Parameters

in ops Generic datatype function table as defined by ucp_generic_dt_ops_t .

in context Application defined context passed to this routine. The context is passed as a
parameter to the routines in the ops table.

out datatype←↩

_p
A pointer to datatype object.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

134 Module Documentation

Returns

Error code as defined by ucs_status_t

6.1.9.6.2 ucp_dt_destroy()

void ucp_dt_destroy (

ucp_datatype_t datatype)

This routine destroys the datatype object and releases any resources that are associated with the object. The
datatype object must be allocated using ucp_dt_create_generic() routine.

Warning

• Once the datatype object is released an access to this object may cause an undefined failure.

Parameters

in datatype Datatype object to destroy.

6.1.9.6.3 ucp_dt_query()

ucs_status_t ucp_dt_query (

ucp_datatype_t datatype,

ucp_datatype_attr_t ∗ attr)

This routine fetches information about the attributes of a datatype. When UCP_DATATYPE_ATTR_FIELD_PACKED_SIZE
is set in field_mask of attr, the field packed_size is set to the packed size (bytes) of the datatype.

Parameters

in datatype Datatype object to query.

in,out attr Filled with attributes of the datatype.

Returns

Error code as defined by ucs_status_t

6.1.9.7 Variable Documentation

6.1.9.7.1 start_pack

void ∗(∗ ucp_generic_dt_ops::start_pack) (void ∗context, const void ∗buffer, size_t count)

The pointer refers to application defined start-to-pack routine. It will be called from the ucp_tag_send_nb routine.

Parameters

in context User-defined context.
in buffer Buffer to pack.

in count Number of elements to pack into the buffer.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.1 Unified Communication Protocol (UCP) API 135

Returns

A custom state that is passed to the following pack() routine.

6.1.9.7.2 start_unpack

void ∗(∗ ucp_generic_dt_ops::start_unpack) (void ∗context, void ∗buffer, size_t count)

The pointer refers to application defined start-to-unpack routine. It will be called from the ucp_tag_recv_nb routine.

Parameters

in context User-defined context.
in buffer Buffer to unpack to.

in count Number of elements to unpack in the buffer.

Returns

A custom state that is passed later to the following unpack() routine.

6.1.9.7.3 packed_size

size_t(∗ ucp_generic_dt_ops::packed_size) (void ∗state)

The pointer refers to user defined routine that returns the size of data in a packed format.

Parameters

in state State as returned by start_pack() routine.

Returns

The size of the data in a packed form.

6.1.9.7.4 pack

size_t(∗ ucp_generic_dt_ops::pack) (void ∗state, size_t offset, void ∗dest, size_t max_length)

The pointer refers to application defined pack routine.

Parameters

in state State as returned by start_pack() routine.

in offset Virtual offset in the output stream.

in dest Destination buffer to pack the data.

in max_length Maximum length to pack.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

136 Module Documentation

Returns

The size of the data that was written to the destination buffer. Must be less than or equal to max_length.

6.1.9.7.5 unpack

ucs_status_t(∗ ucp_generic_dt_ops::unpack) (void ∗state, size_t offset, const void ∗src, size←↩

_t length)

The pointer refers to application defined unpack routine.

Parameters

in state State as returned by start_unpack() routine.

in offset Virtual offset in the input stream.

in src Source to unpack the data from.

in length Length to unpack.

Returns

UCS_OK or an error if unpacking failed.

6.1.9.7.6 finish

void(∗ ucp_generic_dt_ops::finish) (void ∗state)

The pointer refers to application defined finish routine.

Parameters

in state State as returned by start_pack() and start_unpack() routines.

6.2 Unified Communication Transport (UCT) API

Modules

• UCT Communication Resource

• UCT Communication Context

• UCT Memory Domain

• UCT Active messages

• UCT Remote memory access operations

• UCT Atomic operations

• UCT Tag matching operations

• UCT client-server operations

6.2.1 Detailed Description

This section describes UCT API.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 137

6.2.2 UCT Communication Resource

Modules

• UCT interface operations and capabilities

List of capabilities supported by UCX API.

• UCT interface for asynchronous event capabilities

List of capabilities supported by UCT iface event API.

Data Structures

• struct uct_md_resource_desc

Memory domain resource descriptor. More...

• struct uct_component_attr

UCT component attributes. More...

• struct uct_tl_resource_desc

Communication resource descriptor. More...

• struct uct_iface_attr

Interface attributes: capabilities and limitations. More...

• struct uct_iface_params

Parameters used for interface creation. More...

• struct uct_ep_params

Parameters for creating a UCT endpoint by uct_ep_create. More...

• struct uct_completion

Completion handle. More...

• struct uct_pending_req

Pending request. More...

• struct uct_iov

Structure for scatter-gather I/O. More...

• struct uct_iface_attr.cap
• struct uct_iface_attr.cap.put
• struct uct_iface_attr.cap.get
• struct uct_iface_attr.cap.am
• struct uct_iface_attr.cap.tag
• struct uct_iface_attr.cap.tag.recv
• struct uct_iface_attr.cap.tag.eager
• struct uct_iface_attr.cap.tag.rndv
• struct uct_iface_attr.cap.atomic32
• struct uct_iface_attr.cap.atomic64
• union uct_iface_params.mode
• struct uct_iface_params.mode.device
• struct uct_iface_params.mode.sockaddr

Typedefs

• typedef struct uct_md_resource_desc uct_md_resource_desc_t

Memory domain resource descriptor.

• typedef struct uct_component_attr uct_component_attr_t

UCT component attributes.

• typedef struct uct_tl_resource_desc uct_tl_resource_desc_t

Communication resource descriptor.

• typedef struct uct_component ∗ uct_component_h

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

138 Module Documentation

• typedef struct uct_iface ∗ uct_iface_h
• typedef struct uct_iface_config uct_iface_config_t
• typedef struct uct_md_config uct_md_config_t
• typedef struct uct_cm_config uct_cm_config_t
• typedef struct uct_ep ∗ uct_ep_h
• typedef void ∗ uct_mem_h
• typedef uintptr_t uct_rkey_t
• typedef struct uct_md ∗ uct_md_h

Memory domain handler.

• typedef struct uct_md_ops uct_md_ops_t
• typedef void ∗ uct_rkey_ctx_h
• typedef struct uct_iface_attr uct_iface_attr_t
• typedef struct uct_iface_params uct_iface_params_t
• typedef struct uct_ep_attr uct_ep_attr_t
• typedef struct uct_md_attr uct_md_attr_t
• typedef struct uct_completion uct_completion_t
• typedef struct uct_pending_req uct_pending_req_t
• typedef struct uct_worker ∗ uct_worker_h
• typedef struct uct_md uct_md_t
• typedef enum uct_am_trace_type uct_am_trace_type_t
• typedef struct uct_device_addr uct_device_addr_t
• typedef struct uct_iface_addr uct_iface_addr_t
• typedef struct uct_ep_addr uct_ep_addr_t
• typedef struct uct_ep_params uct_ep_params_t
• typedef struct uct_ep_connect_params uct_ep_connect_params_t
• typedef struct uct_cm_attr uct_cm_attr_t
• typedef struct uct_cm uct_cm_t
• typedef uct_cm_t ∗ uct_cm_h
• typedef struct uct_listener_attr uct_listener_attr_t
• typedef struct uct_listener ∗ uct_listener_h
• typedef struct uct_listener_params uct_listener_params_t
• typedef struct uct_tag_context uct_tag_context_t
• typedef uint64_t uct_tag_t
• typedef int uct_worker_cb_id_t
• typedef void ∗ uct_conn_request_h
• typedef struct uct_iov uct_iov_t

Structure for scatter-gather I/O.

• typedef void(∗ uct_completion_callback_t) (uct_completion_t ∗self)

Callback to process send completion.

• typedef ucs_status_t(∗ uct_pending_callback_t) (uct_pending_req_t ∗self)

Callback to process pending requests.

• typedef ucs_status_t(∗ uct_error_handler_t) (void ∗arg, uct_ep_h ep, ucs_status_t status)

Callback to process peer failure.

• typedef void(∗ uct_pending_purge_callback_t) (uct_pending_req_t ∗self, void ∗arg)

Callback to purge pending requests.

• typedef size_t(∗ uct_pack_callback_t) (void ∗dest, void ∗arg)

Callback for producing data.

• typedef void(∗ uct_unpack_callback_t) (void ∗arg, const void ∗data, size_t length)

Callback for consuming data.

• typedef void(∗ uct_async_event_cb_t) (void ∗arg, unsigned flags)

Callback to process asynchronous events.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 139

Enumerations

• enum uct_component_attr_field { UCT_COMPONENT_ATTR_FIELD_NAME = UCS_BIT(0) , UCT_COMPONENT_ATTR_FIELD_MD_RESOURCE_COUNT
= UCS_BIT(1) , UCT_COMPONENT_ATTR_FIELD_MD_RESOURCES = UCS_BIT(2) , UCT_COMPONENT_ATTR_FIELD_FLAGS
= UCS_BIT(3) }

UCT component attributes field mask.

• enum { UCT_COMPONENT_FLAG_CM = UCS_BIT(0) , UCT_COMPONENT_FLAG_RKEY_PTR = UCS←↩

_BIT(1) }

Capability flags of uct_component_h.

• enum uct_device_type_t {
UCT_DEVICE_TYPE_NET , UCT_DEVICE_TYPE_SHM , UCT_DEVICE_TYPE_ACC , UCT_DEVICE_TYPE_SELF
,
UCT_DEVICE_TYPE_LAST }

List of UCX device types.

• enum uct_iface_event_types { UCT_EVENT_SEND_COMP = UCS_BIT(0) , UCT_EVENT_RECV = UCS_←↩

BIT(1) , UCT_EVENT_RECV_SIG = UCS_BIT(2) }

Asynchronous event types.

• enum uct_flush_flags { UCT_FLUSH_FLAG_LOCAL = 0 , UCT_FLUSH_FLAG_CANCEL = UCS_BIT(0) ,
UCT_FLUSH_FLAG_REMOTE = UCS_BIT(1) }

Flush modifiers.

• enum uct_progress_types { UCT_PROGRESS_SEND = UCS_BIT(0) , UCT_PROGRESS_RECV = UCS_←↩

BIT(1) , UCT_PROGRESS_THREAD_SAFE = UCS_BIT(7) }

UCT progress types.

• enum uct_cb_flags { UCT_CB_FLAG_RESERVED = UCS_BIT(1) , UCT_CB_FLAG_ASYNC = UCS_BIT(2)
}

Callback flags.

• enum uct_iface_open_mode { UCT_IFACE_OPEN_MODE_DEVICE = UCS_BIT(0) , UCT_IFACE_OPEN_MODE_SOCKADDR_SERVER
= UCS_BIT(1) , UCT_IFACE_OPEN_MODE_SOCKADDR_CLIENT = UCS_BIT(2) }

Mode in which to open the interface.

• enum uct_iface_params_field {
UCT_IFACE_PARAM_FIELD_CPU_MASK = UCS_BIT(0) , UCT_IFACE_PARAM_FIELD_OPEN_MODE =
UCS_BIT(1) , UCT_IFACE_PARAM_FIELD_DEVICE = UCS_BIT(2) , UCT_IFACE_PARAM_FIELD_SOCKADDR
= UCS_BIT(3) ,
UCT_IFACE_PARAM_FIELD_STATS_ROOT = UCS_BIT(4) , UCT_IFACE_PARAM_FIELD_RX_HEADROOM
= UCS_BIT(5) , UCT_IFACE_PARAM_FIELD_ERR_HANDLER_ARG = UCS_BIT(6) , UCT_IFACE_PARAM_FIELD_ERR_HANDLER
= UCS_BIT(7) ,
UCT_IFACE_PARAM_FIELD_ERR_HANDLER_FLAGS = UCS_BIT(8) , UCT_IFACE_PARAM_FIELD_HW_TM_EAGER_ARG
= UCS_BIT(9) , UCT_IFACE_PARAM_FIELD_HW_TM_EAGER_CB = UCS_BIT(10) , UCT_IFACE_PARAM_FIELD_HW_TM_RNDV_ARG
= UCS_BIT(11) ,
UCT_IFACE_PARAM_FIELD_HW_TM_RNDV_CB = UCS_BIT(12) , UCT_IFACE_PARAM_FIELD_ASYNC_EVENT_ARG
= UCS_BIT(13) , UCT_IFACE_PARAM_FIELD_ASYNC_EVENT_CB = UCS_BIT(14) , UCT_IFACE_PARAM_FIELD_KEEPALIVE_INTERVAL
= UCS_BIT(15) ,
UCT_IFACE_PARAM_FIELD_AM_ALIGNMENT = UCS_BIT(16) , UCT_IFACE_PARAM_FIELD_AM_ALIGN_OFFSET
= UCS_BIT(17) , UCT_IFACE_PARAM_FIELD_FEATURES = UCS_BIT(18) }

UCT interface created by uct_iface_open parameters field mask.

• enum uct_ep_params_field {
UCT_EP_PARAM_FIELD_IFACE = UCS_BIT(0) , UCT_EP_PARAM_FIELD_USER_DATA = UCS_BIT(1) ,
UCT_EP_PARAM_FIELD_DEV_ADDR = UCS_BIT(2) , UCT_EP_PARAM_FIELD_IFACE_ADDR = UCS_←↩

BIT(3) ,
UCT_EP_PARAM_FIELD_SOCKADDR = UCS_BIT(4) , UCT_EP_PARAM_FIELD_SOCKADDR_CB_FLAGS
= UCS_BIT(5) , UCT_EP_PARAM_FIELD_SOCKADDR_PACK_CB = UCS_BIT(6) , UCT_EP_PARAM_FIELD_CM
= UCS_BIT(7) ,
UCT_EP_PARAM_FIELD_CONN_REQUEST = UCS_BIT(8) , UCT_EP_PARAM_FIELD_SOCKADDR_CONNECT_CB_CLIENT
= UCS_BIT(9) , UCT_EP_PARAM_FIELD_SOCKADDR_NOTIFY_CB_SERVER = UCS_BIT(10) ,
UCT_EP_PARAM_FIELD_SOCKADDR_DISCONNECT_CB = UCS_BIT(11) ,
UCT_EP_PARAM_FIELD_PATH_INDEX = UCS_BIT(12) , UCT_EP_PARAM_FIELD_CM_RESOLVE_CB =

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

140 Module Documentation

UCS_BIT(13) , UCT_EP_PARAM_FIELD_PRIV_DATA = UCS_BIT(14) , UCT_EP_PARAM_FIELD_PRIV_DATA_LENGTH
= UCS_BIT(15) ,
UCT_EP_PARAM_FIELD_LOCAL_SOCKADDR = UCS_BIT(16) , UCT_EP_PARAM_FIELD_DEV_ADDR_LENGTH
= UCS_BIT(17) , UCT_EP_PARAM_FIELD_IFACE_ADDR_LENGTH = UCS_BIT(18) }

UCT endpoint created by uct_ep_create parameters field mask.

• enum uct_iface_feature {
UCT_IFACE_FEATURE_AM = UCS_BIT(0) , UCT_IFACE_FEATURE_PUT = UCS_BIT(1) , UCT_IFACE_FEATURE_GET
= UCS_BIT(2) , UCT_IFACE_FEATURE_AMO32 = UCS_BIT(3) ,
UCT_IFACE_FEATURE_AMO64 = UCS_BIT(4) , UCT_IFACE_FEATURE_TAG = UCS_BIT(5) , UCT_IFACE_FEATURE_FLUSH_REMOTE
= UCS_BIT(6) , UCT_IFACE_FEATURE_LAST = UCS_BIT(7) }

UCT interface configuration features.

• enum { UCT_TAG_RECV_CB_INLINE_DATA = UCS_BIT(0) }

flags of uct_tag_context.

• enum uct_cb_param_flags { UCT_CB_PARAM_FLAG_DESC = UCS_BIT(0) , UCT_CB_PARAM_FLAG_FIRST
= UCS_BIT(1) , UCT_CB_PARAM_FLAG_MORE = UCS_BIT(2) }

Flags for active message and tag-matching offload callbacks (callback's parameters).

Functions

• ucs_status_t uct_query_components (uct_component_h ∗∗components_p, unsigned ∗num_components_p)

Query for list of components.

• void uct_release_component_list (uct_component_h ∗components)

Release the list of components returned from uct_query_components.

• ucs_status_t uct_component_query (uct_component_h component, uct_component_attr_t ∗component_attr)

Get component attributes.

• ucs_status_t uct_md_open (uct_component_h component, const char ∗md_name, const uct_md_config_t
∗config, uct_md_h ∗md_p)

Open a memory domain.

• void uct_md_close (uct_md_h md)

Close a memory domain.

• ucs_status_t uct_md_query_tl_resources (uct_md_h md, uct_tl_resource_desc_t ∗∗resources_p, unsigned
∗num_resources_p)

Query for transport resources.

• void uct_release_tl_resource_list (uct_tl_resource_desc_t ∗resources)

Release the list of resources returned from uct_md_query_tl_resources.

• ucs_status_t uct_md_iface_config_read (uct_md_h md, const char ∗tl_name, const char ∗env_prefix, const
char ∗filename, uct_iface_config_t ∗∗config_p)

Read transport-specific interface configuration.

• void uct_config_release (void ∗config)

Release configuration memory returned from uct_md_iface_config_read(), uct_md_config_read(), or from
uct_cm_config_read().

• ucs_status_t uct_iface_open (uct_md_h md, uct_worker_h worker, const uct_iface_params_t ∗params, const
uct_iface_config_t ∗config, uct_iface_h ∗iface_p)

Open a communication interface.

• void uct_iface_close (uct_iface_h iface)

Close and destroy an interface.

• ucs_status_t uct_iface_query (uct_iface_h iface, uct_iface_attr_t ∗iface_attr)

Get interface attributes.

• ucs_status_t uct_iface_get_device_address (uct_iface_h iface, uct_device_addr_t ∗addr)

Get address of the device the interface is using.

• ucs_status_t uct_iface_get_address (uct_iface_h iface, uct_iface_addr_t ∗addr)

Get interface address.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 141

• int uct_iface_is_reachable (const uct_iface_h iface, const uct_device_addr_t ∗dev_addr, const uct_iface_addr_t
∗iface_addr)

Check if remote iface address is reachable.

• ucs_status_t uct_ep_check (const uct_ep_h ep, unsigned flags, uct_completion_t ∗comp)

check if the destination endpoint is alive in respect to UCT library

• ucs_status_t uct_iface_event_fd_get (uct_iface_h iface, int ∗fd_p)

Obtain a notification file descriptor for polling.

• ucs_status_t uct_iface_event_arm (uct_iface_h iface, unsigned events)

Turn on event notification for the next event.

• ucs_status_t uct_iface_mem_alloc (uct_iface_h iface, size_t length, unsigned flags, const char ∗name,
uct_allocated_memory_t ∗mem)

Allocate memory which can be used for zero-copy communications.

• void uct_iface_mem_free (const uct_allocated_memory_t ∗mem)

Release memory allocated with uct_iface_mem_alloc().

• ucs_status_t uct_ep_create (const uct_ep_params_t ∗params, uct_ep_h ∗ep_p)

Create new endpoint.

• void uct_ep_destroy (uct_ep_h ep)

Destroy an endpoint.

• ucs_status_t uct_ep_get_address (uct_ep_h ep, uct_ep_addr_t ∗addr)

Get endpoint address.

• ucs_status_t uct_ep_connect_to_ep (uct_ep_h ep, const uct_device_addr_t ∗dev_addr, const uct_ep_addr_t
∗ep_addr)

Connect endpoint to a remote endpoint.

• ucs_status_t uct_iface_flush (uct_iface_h iface, unsigned flags, uct_completion_t ∗comp)

Flush outstanding communication operations on an interface.

• ucs_status_t uct_iface_fence (uct_iface_h iface, unsigned flags)

Ensures ordering of outstanding communications on the interface. Operations issued on the interface prior to this call
are guaranteed to be completed before any subsequent communication operations to the same interface which follow
the call to fence.

• ucs_status_t uct_ep_pending_add (uct_ep_h ep, uct_pending_req_t ∗req, unsigned flags)

Add a pending request to an endpoint.

• void uct_ep_pending_purge (uct_ep_h ep, uct_pending_purge_callback_t cb, void ∗arg)

Remove all pending requests from an endpoint.

• ucs_status_t uct_ep_flush (uct_ep_h ep, unsigned flags, uct_completion_t ∗comp)

Flush outstanding communication operations on an endpoint.

• ucs_status_t uct_ep_fence (uct_ep_h ep, unsigned flags)

Ensures ordering of outstanding communications on the endpoint. Operations issued on the endpoint prior to this call
are guaranteed to be completed before any subsequent communication operations to the same endpoint which follow
the call to fence.

• void uct_iface_progress_enable (uct_iface_h iface, unsigned flags)

Enable synchronous progress for the interface.

• void uct_iface_progress_disable (uct_iface_h iface, unsigned flags)

Disable synchronous progress for the interface.

• unsigned uct_iface_progress (uct_iface_h iface)

Perform a progress on an interface.

• static UCS_F_ALWAYS_INLINE void uct_completion_update_status (uct_completion_t ∗comp, ucs_status_t
status)

Update status of UCT completion handle.

6.2.2.1 Detailed Description

This section describes a concept of the Communication Resource and routines associated with the concept.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

142 Module Documentation

6.2.2.2 Data Structure Documentation

6.2.2.2.1 struct uct_md_resource_desc

This structure describes a memory domain resource.

Data Fields

char md_name[UCT_MD_NAME_MAX] Memory domain name

6.2.2.2.2 struct uct_component_attr

This structure defines the attributes for UCT component. It is used for uct_component_query

Examples

uct_hello_world.c.

Data Fields

uint64_t field_mask Mask of valid fields in this structure,
using bits from
uct_component_attr_field. Fields not
specified in this mask will be ignored.
Provides ABI compatibility with
respect to adding new fields.

char name[UCT_COMPONENT_NAME_MAX]Component name

unsigned md_resource_count Number of memory-domain resources

uct_md_resource_desc_t ∗ md_resources Array of memory domain resources.
When used, it should be initialized
prior to calling uct_component_query
with a pointer to an array, which is
large enough to hold all memory
domain resource entries. After the
call, this array will be filled with
information about existing memory
domain resources. In order to allocate
this array, you can call
uct_component_query twice: The first
time would only obtain the amount of
entries required, by specifying
UCT_COMPONENT_ATTR_FIELD_MD_RESOURCE_COUNT
in field_mask. Then the array could be
allocated with the returned number of
entries, and passed to a second call to
uct_component_query, this time
setting field_mask to
UCT_COMPONENT_ATTR_FIELD_MD_RESOURCES.

uint64_t flags Flags as defined by
UCT_COMPONENT_FLAG_xx.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 143

6.2.2.2.3 struct uct_tl_resource_desc

Resource descriptor is an object representing the network resource. Resource descriptor could represent a stand-
alone communication resource such as an HCA port, network interface, or multiple resources such as multiple
network interfaces or communication ports. It could also represent virtual communication resources that are defined
over a single physical network interface.

Examples

uct_hello_world.c.

Data Fields

char tl_name[UCT_TL_NAME_MAX] Transport name

char dev_name[UCT_DEVICE_NAME_MAX] Hardware device name

uct_device_type_t dev_type The device represented by this resource
(e.g. UCT_DEVICE_TYPE_NET for a
network interface)

ucs_sys_device_t sys_device The identifier associated with the device
bus_id as captured in ucs_sys_bus_id_t
struct

6.2.2.2.4 struct uct_iface_attr

Examples

uct_hello_world.c.

Data Fields

struct uct_iface_attr.cap cap Interface capabilities

size_t device_addr_len Size of device address
size_t iface_addr_len Size of interface address
size_t ep_addr_len Size of endpoint address

size_t max_conn_priv Max size of the iface's private data. used for connection
establishment with sockaddr

struct sockaddr_storage listen_sockaddr Sockaddr on which this iface is listening.

double overhead Message overhead, seconds

uct_ppn_bandwidth_t bandwidth Bandwidth model

ucs_linear_func_t latency Latency as function of number of active endpoints

uint8_t priority Priority of device

size_t max_num_eps Maximum number of endpoints

unsigned dev_num_paths How many network paths can be utilized on the device used by
this interface for optimal performance. Endpoints that connect
to the same remote address but use different paths can
potentially achieve higher total bandwidth compared to using
only a single endpoint.

6.2.2.2.5 struct uct_iface_params

This structure should be allocated by the user and should be passed to uct_iface_open. User has to initialize all
fields of this structure.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

144 Module Documentation

Examples

uct_hello_world.c.

Data Fields

uint64_t field_mask Mask of valid fields in this structure, using bits from
uct_iface_params_field. Fields not specified in this
mask will be ignored.

ucs_cpu_set_t cpu_mask Mask of CPUs to use for resources

uint64_t open_mode Interface open mode bitmap. uct_iface_open_mode

union uct_iface_params.mode mode Mode-specific parameters

ucs_stats_node_t ∗ stats_root Root in the statistics tree. Can be NULL. If non NULL, it
will be a root of uct_iface object in the statistics tree.

size_t rx_headroom How much bytes to reserve before the receive segment.

void ∗ err_handler_arg Custom argument of err_handler.

uct_error_handler_t err_handler The callback to handle transport level error.

uint32_t err_handler_flags Callback flags to indicate where the err_handler
callback can be invoked from. uct_cb_flags

void ∗ eager_arg These callbacks are only relevant for HW Tag Matching

uct_tag_unexp_eager_cb_t eager_cb Callback for tag matching unexpected eager messages

void ∗ rndv_arg

uct_tag_unexp_rndv_cb_t rndv_cb Callback for tag matching unexpected rndv messages

void ∗ async_event_arg

uct_async_event_cb_t async_event_cb Callback for asynchronous event handling. The callback
will be invoked from UCT transport when there are new
events to be read by user if the iface has
UCT_IFACE_FLAG_EVENT_ASYNC_CB capability

ucs_time_t keepalive_interval

size_t am_alignment Desired alignment for Active Messages on the receiver.
Note that only data received in the UCT descriptor can
be aligned (i.e. UCT_CB_PARAM_FLAG_DESC flag is
provided in the Active Message handler callback). The
provided value must be power of 2. The default value is
1.

size_t am_align_offset Offset in the Active Message receive buffer, which
should be aligned to the am_alignment boundary. Note
this parameter has no effect without setting
am_alignment parameter. The provided value must be
less than the given am_alignment value. The default
value is 0.
+-+ pointer to data in uct_am_callback_t | | + alignment
boundary | | v v +----------------—+ | align | | | offset | |
+----------------—+

uint64_t features UCT features that are used for interface initialization.

6.2.2.2.6 struct uct_ep_params

Examples

uct_hello_world.c.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 145

Data Fields

uint64_t field_mask Mask of valid fields in this structure, using
bits from uct_ep_params_field. Fields not
specified by this mask will be ignored.

uct_iface_h iface Interface to create the endpoint on. Either
iface or cm field must be initialized but not
both.

void ∗ user_data User data associated with the endpoint.

const uct_device_addr_t ∗ dev_addr The device address to connect to on the
remote peer. This must be defined
together with
uct_ep_params_t::iface_addr to create an
endpoint connected to a remote interface.

const uct_iface_addr_t ∗ iface_addr This specifies the remote address to use
when creating an endpoint that is
connected to a remote interface.

Note

This requires
UCT_IFACE_FLAG_CONNECT_TO_IFACE
capability.

const ucs_sock_addr_t ∗ sockaddr The sockaddr to connect to on the remote
peer. If set, uct_ep_create will create an
endpoint for a connection to the remote
peer, specified by its socket address.

Note

The interface in this routine requires
the
UCT_IFACE_FLAG_CONNECT_TO_SOCKADDR
capability.

uint32_t sockaddr_cb_flags uct_cb_flags to indicate
uct_ep_params_t::sockaddr_pack_cb,
uct_ep_params_t::sockaddr_cb_client,
uct_ep_params_t::sockaddr_cb_server,
uct_ep_params_t::disconnect_cb and
uct_ep_params_t::cm_resolve_cb
behavior. If none from these are not set,
this field will be ignored.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

146 Module Documentation

Data Fields

uct_cm_ep_priv_data_pack_callback_t sockaddr_pack_cb Callback that will be used for filling the
user's private data to be delivered to the
remote peer by the callback on the server
or client side. This field is only valid if
uct_ep_params_t::sockaddr is set.

Note

It is never guaranteed that the
callback will be called. If, for
example, the endpoint goes into
error state before issuing the
connection request, the callback will
not be invoked.

Can not be set together with
uct_ep_params_t::private_data or
uct_ep_params_t::cm_resolve_cb.

uct_cm_h cm The connection manager object as
created by uct_cm_open. Either cm or
iface field must be initialized but not both.

uct_conn_request_h conn_request Connection request that was passed to
uct_cm_listener_conn_request_args_t::conn_request.

Note

After a call to uct_ep_create,
params.conn_request is consumed
and should not be used anymore,
even if the call returns with an error.

uct_cm_ep_client_connect_callback_t sockaddr_cb_client Callback that will be invoked when the
endpoint on the client side is being
connected to the server by a connection
manager uct_cm_h .

uct_cm_ep_server_conn_notify_callback_t
sockaddr_cb_server Callback that will be invoked when the

endpoint on the server side is being
connected to a client by a connection
manager uct_cm_h .

uct_ep_disconnect_cb_t disconnect_cb Callback that will be invoked when the
endpoint is disconnected.

unsigned path_index Index of the path which the endpoint
should use, must be in the range
0..(uct_iface_attr_t::dev_num_paths - 1).

uct_cm_ep_resolve_callback_t cm_resolve_cb This callback is invoked when the remote
server address provided in field
uct_ep_params_t::sockaddr is resolved to
the local device to be used for connection
establishment.

Note

This field is mutually exclusive with
uct_ep_params::sockaddr_pack_cb.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 147

Data Fields

const void ∗ private_data Private data to be passed from server to
client. Can be used only along with
uct_ep_params::conn_request.

Note

This field is mutually exclusive with
uct_ep_params::sockaddr_pack_cb.

size_t private_data_length Length of uct_ep_params::private_data,
the maximal allowed value is indicated by
the uct_cm_attr::max_conn_priv.

const ucs_sock_addr_t ∗ local_sockaddr The sockaddr to bind locally. If set,
uct_ep_create will create an endpoint
binding to this local sockaddr.

Note

The interface in this routine requires
the
UCT_IFACE_FLAG_CONNECT_TO_SOCKADDR
capability.

size_t dev_addr_length Device address length. If not provided, the
transport will assume a default minimum
length according to the address buffer
contents.

size_t iface_addr_length Iface address length. If not provided, the
transport will assume a default minimum
length according to the address buffer
contents.

6.2.2.2.7 struct uct_completion

This structure should be allocated by the user and can be passed to communication primitives. The user must
initialize all fields of the structure. If the operation returns UCS_INPROGRESS, this structure will be in use by
the transport until the operation completes. When the operation completes, ¨count¨ field is decremented by 1, and
whenever it reaches 0 - the callback is called.

Notes:

• The same structure can be passed multiple times to communication functions without the need to wait for
completion.

• If the number of operations is smaller than the initial value of the counter, the callback will not be called at all,
so it may be left undefined.

• status field is required to track the first time the error occurred, and report it via a callback when count reaches
0.

Examples

uct_hello_world.c.

Data Fields

uct_completion_callback_t func User callback function

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

148 Module Documentation

Data Fields

int count Completion counter

ucs_status_t status Completion status, this field must be initialized with UCS_OK before first
operation is started.

6.2.2.2.8 struct uct_pending_req

This structure should be passed to uct_ep_pending_add() and is used to signal new available resources back to
user.

Data Fields

uct_pending_callback_t func User callback function

char priv[UCT_PENDING_REQ_PRIV_LEN] Used internally by UCT

6.2.2.2.9 struct uct_iov

Specifies a list of buffers which can be used within a single data transfer function call.

buffer
|
+-----------+-------+-----------+-------+-----------+
| payload | empty | payload | empty | payload |
+-----------+-------+-----------+-------+-----------+
|<-length-->| |<-length-->| |<-length-->|
|<---- stride ----->|<---- stride ----->|

Note

The sum of lengths in all iov list must be less or equal to max_zcopy of the respective communication opera-
tion.

If length or count are zero, the memory pointed to by buffer will not be accessed. Otherwise, buffer must point
to valid memory.

If count is one, every iov entry specifies a single contiguous data block

If count > 1, each iov entry specifies a strided block of count elements and distance of stride byte between
consecutive elements

Examples

uct_hello_world.c.

Data Fields

void ∗ buffer Data buffer
size_t length Length of the payload in bytes

uct_mem_h memh Local memory key descriptor for the data

size_t stride Stride between beginnings of payload elements in the buffer in bytes

unsigned count Number of payload elements in the buffer

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 149

6.2.2.2.10 struct uct_iface_attr.cap

Data Fields

struct uct_iface_attr.cap.put put Attributes for PUT operations

struct uct_iface_attr.cap.get get Attributes for GET operations

struct uct_iface_attr.cap.am am Attributes for AM operations

struct uct_iface_attr.cap.tag tag Attributes for TAG operations

struct uct_iface_attr.cap.atomic32 atomic32

struct uct_iface_attr.cap.atomic64 atomic64 Attributes for atomic operations

uint64_t flags Flags from UCT interface operations and capabilities

uint64_t event_flags Flags from UCT interface for asynchronous event capabilities

6.2.2.2.11 struct uct_iface_attr.cap.put

Data Fields

size_t max_short Maximal size for put_short

size_t max_bcopy Maximal size for put_bcopy

size_t min_zcopy Minimal size for put_zcopy (total of uct_iov_t::length of the iov parameter)

size_t max_zcopy Maximal size for put_zcopy (total of uct_iov_t::length of the iov parameter)

size_t opt_zcopy_align Optimal alignment for zero-copy buffer address

size_t align_mtu MTU used for alignment

size_t max_iov Maximal iovcnt parameter in uct_ep_put_zcopy

6.2.2.2.12 struct uct_iface_attr.cap.get

Data Fields

size_t max_short Maximal size for get_short

size_t max_bcopy Maximal size for get_bcopy

size_t min_zcopy Minimal size for get_zcopy (total of uct_iov_t::length of the iov parameter)

size_t max_zcopy Maximal size for get_zcopy (total of uct_iov_t::length of the iov parameter)

size_t opt_zcopy_align Optimal alignment for zero-copy buffer address

size_t align_mtu MTU used for alignment

size_t max_iov Maximal iovcnt parameter in uct_ep_get_zcopy

6.2.2.2.13 struct uct_iface_attr.cap.am

Data Fields

size_t max_short Total maximum size (incl. the header)

size_t max_bcopy Total maximum size (incl. the header)

size_t min_zcopy Minimal size for am_zcopy (incl. the header and total of uct_iov_t::length of the iov
parameter)

size_t max_zcopy Total max. size (incl. the header and total of uct_iov_t::length of the iov parameter)

size_t opt_zcopy_align Optimal alignment for zero-copy buffer address

size_t align_mtu MTU used for alignment

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

150 Module Documentation

Data Fields

size_t max_hdr Max. header size for zcopy

size_t max_iov Maximal iovcnt parameter in uct_ep_am_zcopy

6.2.2.2.14 struct uct_iface_attr.cap.tag

Data Fields

struct uct_iface_attr.cap.tag.recv recv

struct uct_iface_attr.cap.tag.eager eager Attributes related to eager protocol

struct uct_iface_attr.cap.tag.rndv rndv Attributes related to rendezvous protocol

6.2.2.2.15 struct uct_iface_attr.cap.tag.recv

Data Fields

size_t min_recv Minimal allowed length of posted receive buffer

size_t max_zcopy Maximal allowed data length in uct_iface_tag_recv_zcopy

size_t max_iov Maximal iovcnt parameter in uct_iface_tag_recv_zcopy

size_t max_outstanding Maximal number of simultaneous receive operations

6.2.2.2.16 struct uct_iface_attr.cap.tag.eager

Data Fields

size_t max_short Maximal allowed data length in uct_ep_tag_eager_short

size_t max_bcopy Maximal allowed data length in uct_ep_tag_eager_bcopy

size_t max_zcopy Maximal allowed data length in uct_ep_tag_eager_zcopy

size_t max_iov Maximal iovcnt parameter in uct_ep_tag_eager_zcopy

6.2.2.2.17 struct uct_iface_attr.cap.tag.rndv

Data Fields

size_t max_zcopy Maximal allowed data length in uct_ep_tag_rndv_zcopy

size_t max_hdr Maximal allowed header length in uct_ep_tag_rndv_zcopy and uct_ep_tag_rndv_request

size_t max_iov Maximal iovcnt parameter in uct_ep_tag_rndv_zcopy

6.2.2.2.18 struct uct_iface_attr.cap.atomic32

Data Fields

uint64_t op_flags Attributes for atomic-post operations

uint64_t fop_flags Attributes for atomic-fetch operations

6.2.2.2.19 struct uct_iface_attr.cap.atomic64

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 151

Data Fields

uint64_t op_flags Attributes for atomic-post operations

uint64_t fop_flags Attributes for atomic-fetch operations

6.2.2.2.20 union uct_iface_params.mode

Mode-specific parameters

Data Fields

struct uct_iface_params.mode.device device
The fields in this structure (tl_name and dev_name)
need to be set only when the
UCT_IFACE_OPEN_MODE_DEVICE bit is set in
uct_iface_params_t::open_mode This will make
uct_iface_open open the interface on the specified
device.

struct uct_iface_params.mode.sockaddr sockaddr
These callbacks and address are only relevant for
client-server connection establishment with sockaddr
and are needed on the server side. The callbacks and
address need to be set when the
UCT_IFACE_OPEN_MODE_SOCKADDR_SERVER
bit is set in uct_iface_params_t::open_mode. This will
make uct_iface_open open the interface on the
specified address as a server.

6.2.2.2.21 struct uct_iface_params.mode.device

The fields in this structure (tl_name and dev_name) need to be set only when the UCT_IFACE_OPEN_MODE_DEVICE
bit is set in uct_iface_params_t::open_mode This will make uct_iface_open open the interface on the specified
device.

Data Fields

const char ∗ tl_name Transport name

const char ∗ dev_name Device Name

6.2.2.2.22 struct uct_iface_params.mode.sockaddr

These callbacks and address are only relevant for client-server connection establishment with sockaddr and are
needed on the server side. The callbacks and address need to be set when the UCT_IFACE_OPEN_MODE_SOCKADDR_SERVER
bit is set in uct_iface_params_t::open_mode. This will make uct_iface_open open the interface on the specified
address as a server.

Data Fields

ucs_sock_addr_t listen_sockaddr
void ∗ conn_request_arg Argument for connection request callback

uct_sockaddr_conn_request_callback_t conn_request_cb Callback for an incoming connection
request on the server

uint32_t cb_flags Callback flags to indicate where the
callback can be invoked from. uct_cb_flags

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

152 Module Documentation

6.2.2.3 Typedef Documentation

6.2.2.3.1 uct_md_resource_desc_t

typedef struct uct_md_resource_desc uct_md_resource_desc_t

This structure describes a memory domain resource.

6.2.2.3.2 uct_component_attr_t

typedef struct uct_component_attr uct_component_attr_t

This structure defines the attributes for UCT component. It is used for uct_component_query

6.2.2.3.3 uct_tl_resource_desc_t

typedef struct uct_tl_resource_desc uct_tl_resource_desc_t

Resource descriptor is an object representing the network resource. Resource descriptor could represent a stand-
alone communication resource such as an HCA port, network interface, or multiple resources such as multiple
network interfaces or communication ports. It could also represent virtual communication resources that are defined
over a single physical network interface.

6.2.2.3.4 uct_component_h

typedef struct uct_component∗ uct_component_h

6.2.2.3.5 uct_iface_h

typedef struct uct_iface∗ uct_iface_h

6.2.2.3.6 uct_iface_config_t

typedef struct uct_iface_config uct_iface_config_t

6.2.2.3.7 uct_md_config_t

typedef struct uct_md_config uct_md_config_t

6.2.2.3.8 uct_cm_config_t

typedef struct uct_cm_config uct_cm_config_t

6.2.2.3.9 uct_ep_h

typedef struct uct_ep∗ uct_ep_h

6.2.2.3.10 uct_mem_h

typedef void∗ uct_mem_h

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 153

6.2.2.3.11 uct_rkey_t

typedef uintptr_t uct_rkey_t

6.2.2.3.12 uct_md_h

typedef struct uct_md∗ uct_md_h

6.2.2.3.13 uct_md_ops_t

typedef struct uct_md_ops uct_md_ops_t

6.2.2.3.14 uct_rkey_ctx_h

typedef void∗ uct_rkey_ctx_h

6.2.2.3.15 uct_iface_attr_t

typedef struct uct_iface_attr uct_iface_attr_t

6.2.2.3.16 uct_iface_params_t

typedef struct uct_iface_params uct_iface_params_t

6.2.2.3.17 uct_ep_attr_t

typedef struct uct_ep_attr uct_ep_attr_t

6.2.2.3.18 uct_md_attr_t

typedef struct uct_md_attr uct_md_attr_t

6.2.2.3.19 uct_completion_t

typedef struct uct_completion uct_completion_t

6.2.2.3.20 uct_pending_req_t

typedef struct uct_pending_req uct_pending_req_t

6.2.2.3.21 uct_worker_h

typedef struct uct_worker∗ uct_worker_h

6.2.2.3.22 uct_md_t

typedef struct uct_md uct_md_t

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

154 Module Documentation

6.2.2.3.23 uct_am_trace_type_t

typedef enum uct_am_trace_type uct_am_trace_type_t

6.2.2.3.24 uct_device_addr_t

typedef struct uct_device_addr uct_device_addr_t

6.2.2.3.25 uct_iface_addr_t

typedef struct uct_iface_addr uct_iface_addr_t

6.2.2.3.26 uct_ep_addr_t

typedef struct uct_ep_addr uct_ep_addr_t

6.2.2.3.27 uct_ep_params_t

typedef struct uct_ep_params uct_ep_params_t

6.2.2.3.28 uct_ep_connect_params_t

typedef struct uct_ep_connect_params uct_ep_connect_params_t

6.2.2.3.29 uct_cm_attr_t

typedef struct uct_cm_attr uct_cm_attr_t

6.2.2.3.30 uct_cm_t

typedef struct uct_cm uct_cm_t

6.2.2.3.31 uct_cm_h

typedef uct_cm_t∗ uct_cm_h

6.2.2.3.32 uct_listener_attr_t

typedef struct uct_listener_attr uct_listener_attr_t

6.2.2.3.33 uct_listener_h

typedef struct uct_listener∗ uct_listener_h

6.2.2.3.34 uct_listener_params_t

typedef struct uct_listener_params uct_listener_params_t

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 155

6.2.2.3.35 uct_tag_context_t

typedef struct uct_tag_context uct_tag_context_t

6.2.2.3.36 uct_tag_t

typedef uint64_t uct_tag_t

6.2.2.3.37 uct_worker_cb_id_t

typedef int uct_worker_cb_id_t

6.2.2.3.38 uct_conn_request_h

typedef void∗ uct_conn_request_h

6.2.2.3.39 uct_iov_t

typedef struct uct_iov uct_iov_t

Specifies a list of buffers which can be used within a single data transfer function call.

buffer
|
+-----------+-------+-----------+-------+-----------+
| payload | empty | payload | empty | payload |
+-----------+-------+-----------+-------+-----------+
|<-length-->| |<-length-->| |<-length-->|
|<---- stride ----->|<---- stride ----->|

Note

The sum of lengths in all iov list must be less or equal to max_zcopy of the respective communication opera-
tion.

If length or count are zero, the memory pointed to by buffer will not be accessed. Otherwise, buffer must point
to valid memory.

If count is one, every iov entry specifies a single contiguous data block

If count > 1, each iov entry specifies a strided block of count elements and distance of stride byte between
consecutive elements

6.2.2.3.40 uct_completion_callback_t

typedef void(∗ uct_completion_callback_t) (uct_completion_t ∗self)

Parameters

in self Pointer to relevant completion structure, which was initially passed to the operation.

6.2.2.3.41 uct_pending_callback_t

typedef ucs_status_t(∗ uct_pending_callback_t) (uct_pending_req_t ∗self)

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

156 Module Documentation

Parameters

in self Pointer to relevant pending structure, which was initially passed to the operation.

Returns

UCS_OK - This pending request has completed and should be removed. UCS_INPROGRESS - Some
progress was made, but not completed. Keep this request and keep processing the queue. Otherwise -
Could not make any progress. Keep this pending request on the queue, and stop processing the queue.

6.2.2.3.42 uct_error_handler_t

typedef ucs_status_t(∗ uct_error_handler_t) (void ∗arg, uct_ep_h ep, ucs_status_t status)

Note

User should purge a pending queue and do not post any TX operations and cancel all possible outstanding
operations prior closing a UCT endpoint.

Parameters

in arg User argument to be passed to the callback.

in ep Endpoint which has failed. Upon return from the callback, this ep is no longer usable and all
subsequent operations on this ep will fail with the error code passed in status.

in status Status indicating error.

Returns

UCS_OK - The error was handled successfully. Otherwise - The error was not handled and is returned back
to the transport.

6.2.2.3.43 uct_pending_purge_callback_t

typedef void(∗ uct_pending_purge_callback_t) (uct_pending_req_t ∗self, void ∗arg)

Parameters

in self Pointer to relevant pending structure, which was initially passed to the operation.

in arg User argument to be passed to the callback.

6.2.2.3.44 uct_pack_callback_t

typedef size_t(∗ uct_pack_callback_t) (void ∗dest, void ∗arg)

Parameters

in dest Memory buffer to pack the data to.

in arg Custom user-argument.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 157

Returns

Size of the data was actually produced.

6.2.2.3.45 uct_unpack_callback_t

typedef void(∗ uct_unpack_callback_t) (void ∗arg, const void ∗data, size_t length)

Parameters

in arg Custom user-argument.

in data Memory buffer to unpack the data from.

in length How much data to consume (size of ¨data¨)

Note

The arguments for this callback are in the same order as libc's memcpy().

6.2.2.3.46 uct_async_event_cb_t

typedef void(∗ uct_async_event_cb_t) (void ∗arg, unsigned flags)

Parameters

in arg User argument to be passed to the callback.

in flags Flags to be passed to the callback (reserved for future use).

6.2.2.4 Enumeration Type Documentation

6.2.2.4.1 uct_component_attr_field

enum uct_component_attr_field

The enumeration allows specifying which fields in uct_component_attr_t are present. It is used for backward com-
patibility support.

Enumerator

UCT_COMPONENT_ATTR_FIELD_NAME Component name

UCT_COMPONENT_ATTR_FIELD_MD_RESOURCE_COUNT MD resource count
UCT_COMPONENT_ATTR_FIELD_MD_RESOURCES MD resources array

UCT_COMPONENT_ATTR_FIELD_FLAGS Capability flags

6.2.2.4.2 anonymous enum

anonymous enum

The enumeration defines bit mask of uct_component_h capabilities in uct_component_attr_t::flags which is set by
uct_component_query.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

158 Module Documentation

Enumerator

UCT_COMPONENT_FLAG_CM If set, the component supports uct_cm_h functionality. See
uct_cm_open for details.

UCT_COMPONENT_FLAG_RKEY_PTR If set, the component supports direct access to remote memory
using a local pointer returned from uct_rkey_ptr function.

6.2.2.4.3 uct_device_type_t

enum uct_device_type_t

Enumerator

UCT_DEVICE_TYPE_NET Network devices
UCT_DEVICE_TYPE_SHM Shared memory devices

UCT_DEVICE_TYPE_ACC Acceleration devices
UCT_DEVICE_TYPE_SELF Loop-back device

UCT_DEVICE_TYPE_LAST

6.2.2.4.4 uct_iface_event_types

enum uct_iface_event_types

Note

The UCT_EVENT_RECV and UCT_EVENT_RECV_SIG event types are used to indicate receive-side
completions for both tag matching and active messages. If the interface supports signaled receives
(UCT_IFACE_FLAG_EVENT_RECV_SIG), then for the messages sent with UCT_SEND_FLAG_SIGNALED
flag, UCT_EVENT_RECV_SIG should be triggered on the receiver. Otherwise, UCT_EVENT_RECV should
be triggered.

Enumerator

UCT_EVENT_SEND_COMP Send completion event

UCT_EVENT_RECV Tag or active message received

UCT_EVENT_RECV_SIG Signaled tag or active message received

6.2.2.4.5 uct_flush_flags

enum uct_flush_flags

Enumerator

UCT_FLUSH_FLAG_LOCAL Guarantees that the data transfer is completed but the target buffer may not
be updated yet.

UCT_FLUSH_FLAG_CANCEL The library will make a best effort attempt to cancel all uncompleted
operations. However, there is a chance that some operations will not be
canceled in which case the user will need to handle their completions
through the relevant callbacks. After uct_ep_flush with this flag is
completed, the endpoint will be set to error state, and it becomes unusable
for send operations and should be destroyed.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 159

Enumerator

UCT_FLUSH_FLAG_REMOTE Guarantees that all previous UCP memory update operations (put, atomics,
etc.) are completed, the target memory of these operation was updated, and
the updated memory is globally visible for all processing elements in the
system.

6.2.2.4.6 uct_progress_types

enum uct_progress_types

Enumerator

UCT_PROGRESS_SEND Progress send operations

UCT_PROGRESS_RECV Progress receive operations

UCT_PROGRESS_THREAD_SAFE Enable/disable progress while another thread may be calling
ucp_worker_progress().

6.2.2.4.7 uct_cb_flags

enum uct_cb_flags

List of flags for a callback.

Enumerator

UCT_CB_FLAG_RESERVED Reserved for future use.
UCT_CB_FLAG_ASYNC Callback is allowed to be called from any thread in the process, and therefore

should be thread-safe. For example, it may be called from a transport async
progress thread. To guarantee async invocation, the interface must have the
UCT_IFACE_FLAG_CB_ASYNC flag set. If async callback is requested on
an interface which only supports sync callback (i.e., only the
UCT_IFACE_FLAG_CB_SYNC flag is set), the callback will be invoked only
from the context that called uct_iface_progress).

6.2.2.4.8 uct_iface_open_mode

enum uct_iface_open_mode

Enumerator

UCT_IFACE_OPEN_MODE_DEVICE Interface is opened on a specific device

UCT_IFACE_OPEN_MODE_SOCKADDR_SERVER Interface is opened on a specific address on the
server side. This mode will be deprecated in the near
future for a better API.

UCT_IFACE_OPEN_MODE_SOCKADDR_CLIENT Interface is opened on a specific address on the client
side This mode will be deprecated in the near future
for a better API.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

160 Module Documentation

6.2.2.4.9 uct_iface_params_field

enum uct_iface_params_field

The enumeration allows specifying which fields in uct_iface_params_t are present, for backward compatibility sup-
port.

Enumerator

UCT_IFACE_PARAM_FIELD_CPU_MASK Enables uct_iface_params_t::cpu_mask

UCT_IFACE_PARAM_FIELD_OPEN_MODE Enables uct_iface_params_t::open_mode

UCT_IFACE_PARAM_FIELD_DEVICE Enables uct_iface_params_t::mode::device

UCT_IFACE_PARAM_FIELD_SOCKADDR Enables uct_iface_params_t::mode::sockaddr

UCT_IFACE_PARAM_FIELD_STATS_ROOT Enables uct_iface_params_t::stats_root

UCT_IFACE_PARAM_FIELD_RX_HEADROOM Enables uct_iface_params_t::rx_headroom

UCT_IFACE_PARAM_FIELD_ERR_HANDLER_ARG Enables uct_iface_params_t::err_handler_arg

UCT_IFACE_PARAM_FIELD_ERR_HANDLER Enables uct_iface_params_t::err_handler

UCT_IFACE_PARAM_FIELD_ERR_HANDLER_FLAGS Enables uct_iface_params_t::err_handler_flags

UCT_IFACE_PARAM_FIELD_HW_TM_EAGER_ARG Enables uct_iface_params_t::eager_arg

UCT_IFACE_PARAM_FIELD_HW_TM_EAGER_CB Enables uct_iface_params_t::eager_cb

UCT_IFACE_PARAM_FIELD_HW_TM_RNDV_ARG Enables uct_iface_params_t::rndv_arg

UCT_IFACE_PARAM_FIELD_HW_TM_RNDV_CB Enables uct_iface_params_t::rndv_cb

UCT_IFACE_PARAM_FIELD_ASYNC_EVENT_ARG Enables uct_iface_params_t::async_event_arg

UCT_IFACE_PARAM_FIELD_ASYNC_EVENT_CB Enables uct_iface_params_t::async_event_cb

UCT_IFACE_PARAM_FIELD_KEEPALIVE_INTERVAL Enables uct_iface_params_t::keepalive_interval

UCT_IFACE_PARAM_FIELD_AM_ALIGNMENT Enables uct_iface_params_t::am_alignment

UCT_IFACE_PARAM_FIELD_AM_ALIGN_OFFSET Enables uct_iface_params_t::am_align_offset

UCT_IFACE_PARAM_FIELD_FEATURES Enables uct_iface_params_t::features

6.2.2.4.10 uct_ep_params_field

enum uct_ep_params_field

The enumeration allows specifying which fields in uct_ep_params_t are present, for backward compatibility support.

Enumerator

UCT_EP_PARAM_FIELD_IFACE Enables uct_ep_params::iface

UCT_EP_PARAM_FIELD_USER_DATA Enables uct_ep_params::user_data

UCT_EP_PARAM_FIELD_DEV_ADDR Enables uct_ep_params::dev_addr

UCT_EP_PARAM_FIELD_IFACE_ADDR Enables uct_ep_params::iface_addr

UCT_EP_PARAM_FIELD_SOCKADDR Enables uct_ep_params::sockaddr

UCT_EP_PARAM_FIELD_SOCKADDR_CB_FLAGS Enables uct_ep_params::sockaddr_cb_flags

UCT_EP_PARAM_FIELD_SOCKADDR_PACK_CB Enables uct_ep_params::sockaddr_pack_cb

UCT_EP_PARAM_FIELD_CM Enables uct_ep_params::cm

UCT_EP_PARAM_FIELD_CONN_REQUEST Enables uct_ep_params::conn_request

UCT_EP_PARAM_FIELD_SOCKADDR_CONNECT_CB_←↩

CLIENT
Enables uct_ep_params::sockaddr_cb_client

UCT_EP_PARAM_FIELD_SOCKADDR_NOTIFY_CB_←↩

SERVER
Enables uct_ep_params::sockaddr_cb_server

UCT_EP_PARAM_FIELD_SOCKADDR_DISCONNECT_CB Enables uct_ep_params::disconnect_cb

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 161

Enumerator

UCT_EP_PARAM_FIELD_PATH_INDEX Enables uct_ep_params::path_index

UCT_EP_PARAM_FIELD_CM_RESOLVE_CB Enables uct_ep_params::cm_resolve_cb

UCT_EP_PARAM_FIELD_PRIV_DATA Enables uct_ep_params::private_data

UCT_EP_PARAM_FIELD_PRIV_DATA_LENGTH Enables uct_ep_params::private_data_length

UCT_EP_PARAM_FIELD_LOCAL_SOCKADDR Enables uct_ep_params::local_sockaddr

UCT_EP_PARAM_FIELD_DEV_ADDR_LENGTH Enables uct_ep_params::dev_addr_length

UCT_EP_PARAM_FIELD_IFACE_ADDR_LENGTH Enables uct_ep_params::iface_addr_length

6.2.2.4.11 uct_iface_feature

enum uct_iface_feature

The enumeration list describes the features supported by UCT. An application can request the features using
UCT parameters during UCT iface initialization process.

Enumerator

UCT_IFACE_FEATURE_AM Request Active Message support

UCT_IFACE_FEATURE_PUT Request PUT support

UCT_IFACE_FEATURE_GET Request GET support

UCT_IFACE_FEATURE_AMO32 Request 32-bit atomic operations support

UCT_IFACE_FEATURE_AMO64 Request 64-bit atomic operations support

UCT_IFACE_FEATURE_TAG Request tag matching offload support

UCT_IFACE_FEATURE_FLUSH_REMOTE Request remote flush support

UCT_IFACE_FEATURE_LAST Used to determine the number of features

6.2.2.4.12 anonymous enum

anonymous enum

Enumerator

UCT_TAG_RECV_CB_INLINE_DATA

6.2.2.4.13 uct_cb_param_flags

enum uct_cb_param_flags

If UCT_CB_PARAM_FLAG_DESC flag is enabled, then data is part of a descriptor which includes the user-defined
rx_headroom, and the callback may return UCS_INPROGRESS and hold on to that descriptor. Otherwise, the data
can't be used outside the callback. If needed, the data must be copied-out.

descriptor data
| |
+-------------+-------------------------+
| rx_headroom | payload |
+-------------+-------------------------+

UCT_CB_PARAM_FLAG_FIRST and UCT_CB_PARAM_FLAG_MORE flags are relevant for uct_tag_unexp_eager_cb_t

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

162 Module Documentation

callback only. The former value indicates that the data is the first fragment of the message. The latter value means
that more fragments of the message yet to be delivered.

Enumerator

UCT_CB_PARAM_FLAG_DESC
UCT_CB_PARAM_FLAG_FIRST
UCT_CB_PARAM_FLAG_MORE

6.2.2.5 Function Documentation

6.2.2.5.1 uct_query_components()

ucs_status_t uct_query_components (

uct_component_h ∗∗ components_p,

unsigned ∗ num_components_p)

Obtain the list of transport components available on the current system.

Parameters

out components_p Filled with a pointer to an array of component handles.

out num_components←↩

_p
Filled with the number of elements in the array.

Returns

UCS_OK if successful, or UCS_ERR_NO_MEMORY if failed to allocate the array of component handles.

Examples

uct_hello_world.c.

6.2.2.5.2 uct_release_component_list()

void uct_release_component_list (

uct_component_h ∗ components)

This routine releases the memory associated with the list of components allocated by uct_query_components.

Parameters

in components Array of component handles to release.

Examples

uct_hello_world.c.

6.2.2.5.3 uct_component_query()

ucs_status_t uct_component_query (

uct_component_h component,

uct_component_attr_t ∗ component_attr)

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 163

Query various attributes of a component.

Parameters

in component Component handle to query attributes for. The handle can be obtained from
uct_query_components.

in,out component_attr Filled with component attributes.

Returns

UCS_OK if successful, or nonzero error code in case of failure.

Examples

uct_hello_world.c.

6.2.2.5.4 uct_md_open()

ucs_status_t uct_md_open (

uct_component_h component,

const char ∗ md_name,

const uct_md_config_t ∗ config,

uct_md_h ∗ md_p)

Open a specific memory domain. All communications and memory operations are performed in the context of a
specific memory domain. Therefore it must be created before communication resources.

Parameters

in component Component on which to open the memory domain, as returned from
uct_query_components.

in md_name Memory domain name, as returned from uct_component_query.

in config MD configuration options. Should be obtained from uct_md_config_read() function, or
point to MD-specific structure which extends uct_md_config_t.

out md_p Filled with a handle to the memory domain.

Returns

Error code.

Examples

uct_hello_world.c.

6.2.2.5.5 uct_md_close()

void uct_md_close (

uct_md_h md)

Parameters

in md Memory domain to close.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

164 Module Documentation

Examples

uct_hello_world.c.

6.2.2.5.6 uct_md_query_tl_resources()

ucs_status_t uct_md_query_tl_resources (

uct_md_h md,

uct_tl_resource_desc_t ∗∗ resources_p,

unsigned ∗ num_resources_p)

This routine queries the memory domain for communication resources that are available for it.

Parameters

in md Handle to memory domain.

out resources_p Filled with a pointer to an array of resource descriptors.

out num_resources←↩

_p
Filled with the number of resources in the array.

Returns

Error code.

Examples

uct_hello_world.c.

6.2.2.5.7 uct_release_tl_resource_list()

void uct_release_tl_resource_list (

uct_tl_resource_desc_t ∗ resources)

This routine releases the memory associated with the list of resources allocated by uct_md_query_tl_resources.

Parameters

in resources Array of resource descriptors to release.

Examples

uct_hello_world.c.

6.2.2.5.8 uct_md_iface_config_read()

ucs_status_t uct_md_iface_config_read (

uct_md_h md,

const char ∗ tl_name,

const char ∗ env_prefix,

const char ∗ filename,

uct_iface_config_t ∗∗ config_p)

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 165

Parameters

in md Memory domain on which the transport's interface was registered.

in tl_name Transport name. If md supports UCT_MD_FLAG_SOCKADDR, the transport name is
allowed to be NULL. In this case, the configuration returned from this routine should be
passed to uct_iface_open with UCT_IFACE_OPEN_MODE_SOCKADDR_SERVER or
UCT_IFACE_OPEN_MODE_SOCKADDR_CLIENT set in
uct_iface_params_t::open_mode. In addition, if tl_name is not NULL, the configuration
returned from this routine should be passed to uct_iface_open with
UCT_IFACE_OPEN_MODE_DEVICE set in uct_iface_params_t::open_mode.

in env_prefix If non-NULL, search for environment variables starting with this UCT_<prefix>_.
Otherwise, search for environment variables starting with just UCT_.

in filename If non-NULL, read configuration from this file. If the file does not exist, it will be ignored.

out config_p Filled with a pointer to configuration.

Returns

Error code.

Examples

uct_hello_world.c.

6.2.2.5.9 uct_config_release()

void uct_config_release (

void ∗ config)

Parameters

in config Configuration to release.

Examples

uct_hello_world.c.

6.2.2.5.10 uct_iface_open()

ucs_status_t uct_iface_open (

uct_md_h md,

uct_worker_h worker,

const uct_iface_params_t ∗ params,

const uct_iface_config_t ∗ config,

uct_iface_h ∗ iface_p)

Parameters

in md Memory domain to create the interface on.

in worker Handle to worker which will be used to progress communications on this interface.

in params User defined uct_iface_params_t parameters.

in config Interface configuration options. Should be obtained from uct_md_iface_config_read()
function, or point to transport-specific structure which extends uct_iface_config_t.

out iface←↩

_p
Filled with a handle to opened communication interface.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

166 Module Documentation

Returns

Error code.

Examples

uct_hello_world.c.

6.2.2.5.11 uct_iface_close()

void uct_iface_close (

uct_iface_h iface)

Parameters

in iface Interface to close.

Examples

uct_hello_world.c.

6.2.2.5.12 uct_iface_query()

ucs_status_t uct_iface_query (

uct_iface_h iface,

uct_iface_attr_t ∗ iface_attr)

Parameters

in iface Interface to query.

out iface_attr Filled with interface attributes.

Examples

uct_hello_world.c.

6.2.2.5.13 uct_iface_get_device_address()

ucs_status_t uct_iface_get_device_address (

uct_iface_h iface,

uct_device_addr_t ∗ addr)

Get underlying device address of the interface. All interfaces using the same device would return the same address.

Parameters

in iface Interface to query.

out addr Filled with device address. The size of the buffer provided must be at least
uct_iface_attr_t::device_addr_len.

Examples

uct_hello_world.c.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 167

6.2.2.5.14 uct_iface_get_address()

ucs_status_t uct_iface_get_address (

uct_iface_h iface,

uct_iface_addr_t ∗ addr)

requires UCT_IFACE_FLAG_CONNECT_TO_IFACE.

Parameters

in iface Interface to query.

out addr Filled with interface address. The size of the buffer provided must be at least
uct_iface_attr_t::iface_addr_len.

Examples

uct_hello_world.c.

6.2.2.5.15 uct_iface_is_reachable()

int uct_iface_is_reachable (

const uct_iface_h iface,

const uct_device_addr_t ∗ dev_addr,

const uct_iface_addr_t ∗ iface_addr)

This function checks if a remote address can be reached from a local interface. If the function returns true, it
does not necessarily mean a connection and/or data transfer would succeed, since the reachability check is a local
operation it does not detect issues such as network mis-configuration or lack of connectivity.

Parameters

in iface Interface to check reachability from.

in dev_addr Device address to check reachability to. It is NULL if iface_attr.dev_addr_len == 0, and
must be non-NULL otherwise.

in iface_addr Interface address to check reachability to. It is NULL if iface_attr.iface_addr_len == 0, and
must be non-NULL otherwise.

Returns

Nonzero if reachable, 0 if not.

Examples

uct_hello_world.c.

6.2.2.5.16 uct_ep_check()

ucs_status_t uct_ep_check (

const uct_ep_h ep,

unsigned flags,

uct_completion_t ∗ comp)

This function checks if the destination endpoint is alive with respect to the UCT library. If the status of ep is known,
either UCS_OK or an error is returned immediately. Otherwise, UCS_INPROGRESS is returned, indicating that
synchronization on the status is needed. In this case, the status will be be propagated by comp callback.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

168 Module Documentation

Parameters

in ep Endpoint to check

in flags Flags that define level of check (currently unsupported - set to 0).

in comp Handler to process status of ep

Returns

Error code.

6.2.2.5.17 uct_iface_event_fd_get()

ucs_status_t uct_iface_event_fd_get (

uct_iface_h iface,

int ∗ fd_p)

Only interfaces that support at least one of the UCT_IFACE_FLAG_EVENT∗ flags will implement this function.

Parameters

in iface Interface to get the notification descriptor.

out fd←↩

_p
Location to write the notification file descriptor.

Returns

Error code.

6.2.2.5.18 uct_iface_event_arm()

ucs_status_t uct_iface_event_arm (

uct_iface_h iface,

unsigned events)

This routine needs to be called before waiting on each notification on this interface, so will typically be called once
the processing of the previous event is over.

Parameters

in iface Interface to arm.
in events Events to wakeup on. See uct_iface_event_types

Returns

UCS_OK The operation completed successfully. File descriptor will be signaled by new events.

UCS_ERR_BUSY There are unprocessed events which prevent the file descriptor from being armed. The
operation is not completed. File descriptor will not be signaled by new events.

Other different error codes in case of issues.

6.2.2.5.19 uct_iface_mem_alloc()

ucs_status_t uct_iface_mem_alloc (

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 169

uct_iface_h iface,

size_t length,

unsigned flags,

const char ∗ name,

uct_allocated_memory_t ∗ mem)

Allocate a region of memory which can be used for zero-copy data transfer or remote access on a particular transport
interface.

Parameters

in iface Interface to allocate memory on.

in length Size of memory region to allocate.

in flags Memory allocation flags, see uct_md_mem_flags.

in name Allocation name, for debug purposes.

out mem Descriptor of allocated memory.

Returns

UCS_OK if allocation was successful, error code otherwise.

6.2.2.5.20 uct_iface_mem_free()

void uct_iface_mem_free (

const uct_allocated_memory_t ∗ mem)

Parameters

in mem Descriptor of memory to release.

6.2.2.5.21 uct_ep_create()

ucs_status_t uct_ep_create (

const uct_ep_params_t ∗ params,

uct_ep_h ∗ ep_p)

Create a UCT endpoint in one of the available modes:

1. Unconnected endpoint: If no any address is present in uct_ep_params, this creates an unconnected endpoint.
To establish a connection to a remote endpoint, uct_ep_connect_to_ep will need to be called. Use of this
mode requires uct_ep_params_t::iface has the UCT_IFACE_FLAG_CONNECT_TO_EP capability flag. It
may be obtained by uct_iface_query.

2. Connect to a remote interface: If uct_ep_params_t::dev_addr and uct_ep_params_t::iface_addr are set, this
will establish an endpoint that is connected to a remote interface. This requires that uct_ep_params_t::iface
has the UCT_IFACE_FLAG_CONNECT_TO_IFACE capability flag. It may be obtained by uct_iface_query.

3. Connect to a remote socket address: If uct_ep_params_t::sockaddr is set, this will create an endpoint that
is connected to a remote socket. This requires that either uct_ep_params::cm, or uct_ep_params::iface will
be set. In the latter case, the interface has to support UCT_IFACE_FLAG_CONNECT_TO_SOCKADDR flag,
which can be checked by calling uct_iface_query.

Parameters

in params User defined uct_ep_params_t configuration for the ep_p.

out ep_p Filled with handle to the new endpoint.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

170 Module Documentation

Returns

UCS_OK The endpoint is created successfully. This does not guarantee that the endpoint has been
connected to the destination defined in params; in case of failure, the error will be reported to the
interface error handler callback provided to uct_iface_open via uct_iface_params_t::err_handler.

Error code as defined by ucs_status_t

Examples

uct_hello_world.c.

6.2.2.5.22 uct_ep_destroy()

void uct_ep_destroy (

uct_ep_h ep)

Parameters

in ep Endpoint to destroy.

Examples

uct_hello_world.c.

6.2.2.5.23 uct_ep_get_address()

ucs_status_t uct_ep_get_address (

uct_ep_h ep,

uct_ep_addr_t ∗ addr)

Parameters

in ep Endpoint to query.

out addr Filled with endpoint address. The size of the buffer provided must be at least
uct_iface_attr_t::ep_addr_len.

Examples

uct_hello_world.c.

6.2.2.5.24 uct_ep_connect_to_ep()

ucs_status_t uct_ep_connect_to_ep (

uct_ep_h ep,

const uct_device_addr_t ∗ dev_addr,

const uct_ep_addr_t ∗ ep_addr)

requires UCT_IFACE_FLAG_CONNECT_TO_EP capability.

Parameters

in ep Endpoint to connect.

in dev_addr Remote device address.
in ep_addr Remote endpoint address.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 171

Examples

uct_hello_world.c.

6.2.2.5.25 uct_iface_flush()

ucs_status_t uct_iface_flush (

uct_iface_h iface,

unsigned flags,

uct_completion_t ∗ comp)

Flushes all outstanding communications issued on the interface prior to this call. The operations are completed at
the origin or at the target as well. The exact completion semantic depends on flags parameter.

Note

Currently only one completion type is supported. It guarantees that the data transfer is completed but the
target buffer may not be updated yet.

Parameters

in iface Interface to flush communications from.
in flags Flags that control completion semantic (currently only UCT_FLUSH_FLAG_LOCAL is

supported).

in,out comp Completion handle as defined by uct_completion_t. Can be NULL, which means that the
call will return the current state of the interface and no completion will be generated in
case of outstanding communications. If it is not NULL completion counter is decremented
by 1 when the call completes. Completion callback is called when the counter reaches 0.

Returns

UCS_OK - No outstanding communications left. UCS_INPROGRESS - Some communication operations are
still in progress. If non-NULL 'comp' is provided, it will be updated upon completion of these operations.

6.2.2.5.26 uct_iface_fence()

ucs_status_t uct_iface_fence (

uct_iface_h iface,

unsigned flags)

Parameters

in iface Interface to issue communications from.
in flags Flags that control ordering semantic (currently unsupported - set to 0).

Returns

UCS_OK - Ordering is inserted.

6.2.2.5.27 uct_ep_pending_add()

ucs_status_t uct_ep_pending_add (

uct_ep_h ep,

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

172 Module Documentation

uct_pending_req_t ∗ req,

unsigned flags)

Add a pending request to the endpoint pending queue. The request will be dispatched when the endpoint could
potentially have additional send resources.

Parameters

in ep Endpoint to add the pending request to.

in req Pending request, which would be dispatched when more resources become available. The user
is expected to initialize the ¨func¨ field. After being passed to the function, the request is owned
by UCT, until the callback is called and returns UCS_OK.

in flags Flags that control pending request processing (see uct_cb_flags)

Returns

UCS_OK - request added to pending queue UCS_ERR_BUSY - request was not added to pending queue,
because send resources are available now. The user is advised to retry.

6.2.2.5.28 uct_ep_pending_purge()

void uct_ep_pending_purge (

uct_ep_h ep,

uct_pending_purge_callback_t cb,

void ∗ arg)

Remove pending requests from the given endpoint and pass them to the provided callback function. The callback
return value is ignored.

Parameters

in ep Endpoint to remove pending requests from.

in cb Callback to pass the removed requests to.

in arg Argument to pass to the cb callback.

6.2.2.5.29 uct_ep_flush()

ucs_status_t uct_ep_flush (

uct_ep_h ep,

unsigned flags,

uct_completion_t ∗ comp)

Flushes all outstanding communications issued on the endpoint prior to this call. The operations are completed at
the origin or at the target as well. The exact completion semantic depends on flags parameter.

Parameters

in ep Endpoint to flush communications from.

in flags Flags uct_flush_flags that control completion semantic.

in,out comp Completion handle as defined by uct_completion_t. Can be NULL, which means that the
call will return the current state of the endpoint and no completion will be generated in
case of outstanding communications. If it is not NULL completion counter is decremented
by 1 when the call completes. Completion callback is called when the counter reaches 0.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 173

Returns

UCS_OK - No outstanding communications left. UCS_ERR_NO_RESOURCE - Flush operation could not
be initiated. A subsequent call to uct_ep_pending_add would add a pending operation, which provides an
opportunity to retry the flush. UCS_INPROGRESS - Some communication operations are still in progress. If
non-NULL 'comp' is provided, it will be updated upon completion of these operations.

6.2.2.5.30 uct_ep_fence()

ucs_status_t uct_ep_fence (

uct_ep_h ep,

unsigned flags)

Parameters

in ep Endpoint to issue communications from.

in flags Flags that control ordering semantic (currently unsupported - set to 0).

Returns

UCS_OK - Ordering is inserted.

6.2.2.5.31 uct_iface_progress_enable()

void uct_iface_progress_enable (

uct_iface_h iface,

unsigned flags)

Notify the transport that it should actively progress communications during uct_worker_progress().

When the interface is created, its progress is initially disabled.

Parameters

in iface The interface to enable progress.

in flags The type of progress to enable as defined by uct_progress_types

Note

This function is not thread safe with respect to ucp_worker_progress(), unless the flag UCT_PROGRESS_THREAD_SAFE
is specified.

Examples

uct_hello_world.c.

6.2.2.5.32 uct_iface_progress_disable()

void uct_iface_progress_disable (

uct_iface_h iface,

unsigned flags)

Notify the transport that it should not progress its communications during uct_worker_progress(). Thus the latency
of other transports may be improved.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

174 Module Documentation

By default, progress is disabled when the interface is created.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 175

Parameters

in iface The interface to disable progress.

in flags The type of progress to disable as defined by uct_progress_types.

Note

This function is not thread safe with respect to ucp_worker_progress(), unless the flag UCT_PROGRESS_THREAD_SAFE
is specified.

6.2.2.5.33 uct_iface_progress()

unsigned uct_iface_progress (

uct_iface_h iface)

6.2.2.5.34 uct_completion_update_status()

static UCS_F_ALWAYS_INLINE void uct_completion_update_status (

uct_completion_t ∗ comp,

ucs_status_t status) [static]

Parameters

comp [in] Completion handle to update.

status [in] Status to update comp handle.

6.2.2.6 UCT interface operations and capabilities

List of capabilities supported by UCX API.

Macros

• #define UCT_IFACE_FLAG_AM_SHORT UCS_BIT(0)
• #define UCT_IFACE_FLAG_AM_BCOPY UCS_BIT(1)
• #define UCT_IFACE_FLAG_AM_ZCOPY UCS_BIT(2)
• #define UCT_IFACE_FLAG_PENDING UCS_BIT(3)
• #define UCT_IFACE_FLAG_PUT_SHORT UCS_BIT(4)
• #define UCT_IFACE_FLAG_PUT_BCOPY UCS_BIT(5)
• #define UCT_IFACE_FLAG_PUT_ZCOPY UCS_BIT(6)
• #define UCT_IFACE_FLAG_GET_SHORT UCS_BIT(8)
• #define UCT_IFACE_FLAG_GET_BCOPY UCS_BIT(9)
• #define UCT_IFACE_FLAG_GET_ZCOPY UCS_BIT(10)
• #define UCT_IFACE_FLAG_ATOMIC_CPU UCS_BIT(30)
• #define UCT_IFACE_FLAG_ATOMIC_DEVICE UCS_BIT(31)
• #define UCT_IFACE_FLAG_ERRHANDLE_SHORT_BUF UCS_BIT(32)
• #define UCT_IFACE_FLAG_ERRHANDLE_BCOPY_BUF UCS_BIT(33)
• #define UCT_IFACE_FLAG_ERRHANDLE_ZCOPY_BUF UCS_BIT(34)
• #define UCT_IFACE_FLAG_ERRHANDLE_AM_ID UCS_BIT(35)
• #define UCT_IFACE_FLAG_ERRHANDLE_REMOTE_MEM UCS_BIT(36)
• #define UCT_IFACE_FLAG_ERRHANDLE_BCOPY_LEN UCS_BIT(37)
• #define UCT_IFACE_FLAG_ERRHANDLE_PEER_FAILURE UCS_BIT(38)

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

176 Module Documentation

• #define UCT_IFACE_FLAG_EP_CHECK UCS_BIT(39)
• #define UCT_IFACE_FLAG_CONNECT_TO_IFACE UCS_BIT(40)
• #define UCT_IFACE_FLAG_CONNECT_TO_EP UCS_BIT(41)
• #define UCT_IFACE_FLAG_CONNECT_TO_SOCKADDR UCS_BIT(42)
• #define UCT_IFACE_FLAG_AM_DUP UCS_BIT(43)
• #define UCT_IFACE_FLAG_CB_SYNC UCS_BIT(44)
• #define UCT_IFACE_FLAG_CB_ASYNC UCS_BIT(45)
• #define UCT_IFACE_FLAG_EP_KEEPALIVE UCS_BIT(46)
• #define UCT_IFACE_FLAG_TAG_EAGER_SHORT UCS_BIT(50)
• #define UCT_IFACE_FLAG_TAG_EAGER_BCOPY UCS_BIT(51)
• #define UCT_IFACE_FLAG_TAG_EAGER_ZCOPY UCS_BIT(52)
• #define UCT_IFACE_FLAG_TAG_RNDV_ZCOPY UCS_BIT(53)
• #define UCT_IFACE_FLAG_INTER_NODE UCS_BIT(54)

6.2.2.6.1 Detailed Description

The definition list presents a full list of operations and capabilities exposed by UCX API.

6.2.2.6.2 Macro Definition Documentation

6.2.2.6.2.1 UCT_IFACE_FLAG_AM_SHORT

#define UCT_IFACE_FLAG_AM_SHORT UCS_BIT(0)

Short active message

Examples

uct_hello_world.c.

6.2.2.6.2.2 UCT_IFACE_FLAG_AM_BCOPY

#define UCT_IFACE_FLAG_AM_BCOPY UCS_BIT(1)

Buffered active message

Examples

uct_hello_world.c.

6.2.2.6.2.3 UCT_IFACE_FLAG_AM_ZCOPY

#define UCT_IFACE_FLAG_AM_ZCOPY UCS_BIT(2)

Zero-copy active message

Examples

uct_hello_world.c.

6.2.2.6.2.4 UCT_IFACE_FLAG_PENDING

#define UCT_IFACE_FLAG_PENDING UCS_BIT(3)

Pending operations

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 177

6.2.2.6.2.5 UCT_IFACE_FLAG_PUT_SHORT

#define UCT_IFACE_FLAG_PUT_SHORT UCS_BIT(4)

Short put

6.2.2.6.2.6 UCT_IFACE_FLAG_PUT_BCOPY

#define UCT_IFACE_FLAG_PUT_BCOPY UCS_BIT(5)

Buffered put

6.2.2.6.2.7 UCT_IFACE_FLAG_PUT_ZCOPY

#define UCT_IFACE_FLAG_PUT_ZCOPY UCS_BIT(6)

Zero-copy put

6.2.2.6.2.8 UCT_IFACE_FLAG_GET_SHORT

#define UCT_IFACE_FLAG_GET_SHORT UCS_BIT(8)

Short get

6.2.2.6.2.9 UCT_IFACE_FLAG_GET_BCOPY

#define UCT_IFACE_FLAG_GET_BCOPY UCS_BIT(9)

Buffered get

6.2.2.6.2.10 UCT_IFACE_FLAG_GET_ZCOPY

#define UCT_IFACE_FLAG_GET_ZCOPY UCS_BIT(10)

Zero-copy get

6.2.2.6.2.11 UCT_IFACE_FLAG_ATOMIC_CPU

#define UCT_IFACE_FLAG_ATOMIC_CPU UCS_BIT(30)

Atomic communications are consistent with respect to CPU operations.

6.2.2.6.2.12 UCT_IFACE_FLAG_ATOMIC_DEVICE

#define UCT_IFACE_FLAG_ATOMIC_DEVICE UCS_BIT(31)

Atomic communications are consistent only with respect to other atomics on the same device.

6.2.2.6.2.13 UCT_IFACE_FLAG_ERRHANDLE_SHORT_BUF

#define UCT_IFACE_FLAG_ERRHANDLE_SHORT_BUF UCS_BIT(32)

Invalid buffer for short operation

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

178 Module Documentation

6.2.2.6.2.14 UCT_IFACE_FLAG_ERRHANDLE_BCOPY_BUF

#define UCT_IFACE_FLAG_ERRHANDLE_BCOPY_BUF UCS_BIT(33)

Invalid buffer for buffered operation

6.2.2.6.2.15 UCT_IFACE_FLAG_ERRHANDLE_ZCOPY_BUF

#define UCT_IFACE_FLAG_ERRHANDLE_ZCOPY_BUF UCS_BIT(34)

Invalid buffer for zero copy operation

6.2.2.6.2.16 UCT_IFACE_FLAG_ERRHANDLE_AM_ID

#define UCT_IFACE_FLAG_ERRHANDLE_AM_ID UCS_BIT(35)

Invalid AM id on remote

6.2.2.6.2.17 UCT_IFACE_FLAG_ERRHANDLE_REMOTE_MEM

#define UCT_IFACE_FLAG_ERRHANDLE_REMOTE_MEM UCS_BIT(36)

Remote memory access

6.2.2.6.2.18 UCT_IFACE_FLAG_ERRHANDLE_BCOPY_LEN

#define UCT_IFACE_FLAG_ERRHANDLE_BCOPY_LEN UCS_BIT(37)

Invalid length for buffered operation

6.2.2.6.2.19 UCT_IFACE_FLAG_ERRHANDLE_PEER_FAILURE

#define UCT_IFACE_FLAG_ERRHANDLE_PEER_FAILURE UCS_BIT(38)

Remote peer failures/outage

6.2.2.6.2.20 UCT_IFACE_FLAG_EP_CHECK

#define UCT_IFACE_FLAG_EP_CHECK UCS_BIT(39)

Endpoint check

6.2.2.6.2.21 UCT_IFACE_FLAG_CONNECT_TO_IFACE

#define UCT_IFACE_FLAG_CONNECT_TO_IFACE UCS_BIT(40)

Supports connecting to interface

Examples

uct_hello_world.c.

6.2.2.6.2.22 UCT_IFACE_FLAG_CONNECT_TO_EP

#define UCT_IFACE_FLAG_CONNECT_TO_EP UCS_BIT(41)

Supports connecting to specific endpoint

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 179

Examples

uct_hello_world.c.

6.2.2.6.2.23 UCT_IFACE_FLAG_CONNECT_TO_SOCKADDR

#define UCT_IFACE_FLAG_CONNECT_TO_SOCKADDR UCS_BIT(42)

Supports connecting to sockaddr

6.2.2.6.2.24 UCT_IFACE_FLAG_AM_DUP

#define UCT_IFACE_FLAG_AM_DUP UCS_BIT(43)

Active messages may be received with duplicates This happens if the transport does not keep enough information
to detect retransmissions

6.2.2.6.2.25 UCT_IFACE_FLAG_CB_SYNC

#define UCT_IFACE_FLAG_CB_SYNC UCS_BIT(44)

Interface supports setting a callback which is invoked only from the calling context of uct_worker_progress()

6.2.2.6.2.26 UCT_IFACE_FLAG_CB_ASYNC

#define UCT_IFACE_FLAG_CB_ASYNC UCS_BIT(45)

Interface supports setting a callback which will be invoked within a reasonable amount of time if uct_worker_progress()
is not being called. The callback can be invoked from any progress context and it may also be invoked when
uct_worker_progress() is called.

6.2.2.6.2.27 UCT_IFACE_FLAG_EP_KEEPALIVE

#define UCT_IFACE_FLAG_EP_KEEPALIVE UCS_BIT(46)

Transport endpoint has built-in keepalive feature, which guarantees the error callback on the transport interface will
be called if the communication channel with remote peer is broken, even if there are no outstanding send operations

6.2.2.6.2.28 UCT_IFACE_FLAG_TAG_EAGER_SHORT

#define UCT_IFACE_FLAG_TAG_EAGER_SHORT UCS_BIT(50)

Hardware tag matching short eager support

6.2.2.6.2.29 UCT_IFACE_FLAG_TAG_EAGER_BCOPY

#define UCT_IFACE_FLAG_TAG_EAGER_BCOPY UCS_BIT(51)

Hardware tag matching bcopy eager support

6.2.2.6.2.30 UCT_IFACE_FLAG_TAG_EAGER_ZCOPY

#define UCT_IFACE_FLAG_TAG_EAGER_ZCOPY UCS_BIT(52)

Hardware tag matching zcopy eager support

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

180 Module Documentation

6.2.2.6.2.31 UCT_IFACE_FLAG_TAG_RNDV_ZCOPY

#define UCT_IFACE_FLAG_TAG_RNDV_ZCOPY UCS_BIT(53)

Hardware tag matching rendezvous zcopy support

6.2.2.6.2.32 UCT_IFACE_FLAG_INTER_NODE

#define UCT_IFACE_FLAG_INTER_NODE UCS_BIT(54)

Interface is inter-node capable

6.2.2.7 UCT interface for asynchronous event capabilities

List of capabilities supported by UCT iface event API.

Macros

• #define UCT_IFACE_FLAG_EVENT_SEND_COMP UCS_BIT(0)
• #define UCT_IFACE_FLAG_EVENT_RECV UCS_BIT(1)
• #define UCT_IFACE_FLAG_EVENT_RECV_SIG UCS_BIT(2)
• #define UCT_IFACE_FLAG_EVENT_FD UCS_BIT(3)
• #define UCT_IFACE_FLAG_EVENT_ASYNC_CB UCS_BIT(4)

6.2.2.7.1 Detailed Description

The definition list presents a full list of operations and capabilities supported by UCT iface event.

6.2.2.7.2 Macro Definition Documentation

6.2.2.7.2.1 UCT_IFACE_FLAG_EVENT_SEND_COMP

#define UCT_IFACE_FLAG_EVENT_SEND_COMP UCS_BIT(0)

Event notification of send completion is supported

6.2.2.7.2.2 UCT_IFACE_FLAG_EVENT_RECV

#define UCT_IFACE_FLAG_EVENT_RECV UCS_BIT(1)

Event notification of tag and active message receive is supported

6.2.2.7.2.3 UCT_IFACE_FLAG_EVENT_RECV_SIG

#define UCT_IFACE_FLAG_EVENT_RECV_SIG UCS_BIT(2)

Event notification of signaled tag and active message is supported

6.2.2.7.2.4 UCT_IFACE_FLAG_EVENT_FD

#define UCT_IFACE_FLAG_EVENT_FD UCS_BIT(3)

Event notification through File Descriptor is supported

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 181

6.2.2.7.2.5 UCT_IFACE_FLAG_EVENT_ASYNC_CB

#define UCT_IFACE_FLAG_EVENT_ASYNC_CB UCS_BIT(4)

Event notification through asynchronous callback invocation is supported

6.2.3 UCT Communication Context

Enumerations

• enum uct_alloc_method_t {
UCT_ALLOC_METHOD_THP , UCT_ALLOC_METHOD_MD , UCT_ALLOC_METHOD_HEAP , UCT_ALLOC_METHOD_MMAP
,
UCT_ALLOC_METHOD_HUGE , UCT_ALLOC_METHOD_LAST , UCT_ALLOC_METHOD_DEFAULT =
UCT_ALLOC_METHOD_LAST }

Memory allocation methods.

Functions

• ucs_status_t uct_worker_create (ucs_async_context_t ∗async, ucs_thread_mode_t thread_mode,
uct_worker_h ∗worker_p)

Create a worker object.

• void uct_worker_destroy (uct_worker_h worker)

Destroy a worker object.

• void uct_worker_progress_register_safe (uct_worker_h worker, ucs_callback_t func, void ∗arg, unsigned
flags, uct_worker_cb_id_t ∗id_p)

Add a slow path callback function to a worker progress.

• void uct_worker_progress_unregister_safe (uct_worker_h worker, uct_worker_cb_id_t ∗id_p)

Remove a slow path callback function from worker's progress.

• ucs_status_t uct_config_get (void ∗config, const char ∗name, char ∗value, size_t max)

Get value by name from interface configuration (uct_iface_config_t), memory domain configuration (uct_md_config_t)
or connection manager configuration (uct_cm_config_t).

• ucs_status_t uct_config_modify (void ∗config, const char ∗name, const char ∗value)

Modify interface configuration (uct_iface_config_t), memory domain configuration (uct_md_config_t) or connection
manager configuration (uct_cm_config_t).

• unsigned uct_worker_progress (uct_worker_h worker)

Explicit progress for UCT worker.

6.2.3.1 Detailed Description

UCT context abstracts all the resources required for network communication. It is designed to enable either share
or isolate resources for multiple programming models used by an application.

This section provides a detailed description of this concept and routines associated with it.

6.2.3.2 Enumeration Type Documentation

6.2.3.2.1 uct_alloc_method_t

enum uct_alloc_method_t

Enumerator

UCT_ALLOC_METHOD_THP Allocate from OS using libc allocator with Transparent Huge Pages enabled

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

182 Module Documentation

Enumerator

UCT_ALLOC_METHOD_MD Allocate using memory domain

UCT_ALLOC_METHOD_HEAP Allocate from heap using libc allocator

UCT_ALLOC_METHOD_MMAP Allocate from OS using mmap() syscall

UCT_ALLOC_METHOD_HUGE Allocate huge pages

UCT_ALLOC_METHOD_LAST
UCT_ALLOC_METHOD_DEFAULT Use default method

6.2.3.3 Function Documentation

6.2.3.3.1 uct_worker_create()

ucs_status_t uct_worker_create (

ucs_async_context_t ∗ async,

ucs_thread_mode_t thread_mode,

uct_worker_h ∗ worker_p)

The worker represents a progress engine. Multiple progress engines can be created in an application, for example
to be used by multiple threads. Transports can allocate separate communication resources for every worker, so that
every worker can be progressed independently of others.

Parameters

in async Context for async event handlers. Must not be NULL.

in thread_mode Thread access mode to the worker and all interfaces and endpoints associated with it.

out worker_p Filled with a pointer to the worker object.

Examples

uct_hello_world.c.

6.2.3.3.2 uct_worker_destroy()

void uct_worker_destroy (

uct_worker_h worker)

Parameters

in worker Worker object to destroy.

Examples

uct_hello_world.c.

6.2.3.3.3 uct_worker_progress_register_safe()

void uct_worker_progress_register_safe (

uct_worker_h worker,

ucs_callback_t func,

void ∗ arg,

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 183

unsigned flags,

uct_worker_cb_id_t ∗ id_p)

If ∗id_p is equal to UCS_CALLBACKQ_ID_NULL, this function will add a callback which will be invoked every time
progress is made on the worker. ∗id_p will be updated with an id which refers to this callback and can be used in
uct_worker_progress_unregister_safe to remove it from the progress path.

Parameters

in worker Handle to the worker whose progress should invoke the callback.

in func Pointer to the callback function.
in arg Argument for the callback function.

in flags Callback flags, see ucs_callbackq_flags.

in,out id_p Points to a location to store a callback identifier. If ∗id_p is equal to
UCS_CALLBACKQ_ID_NULL, a callback will be added and ∗id_p will be replaced with
a callback identifier which can be subsequently used to remove the callback. Otherwise,
no callback will be added and ∗id_p will be left unchanged.

Note

This function is thread safe.

6.2.3.3.4 uct_worker_progress_unregister_safe()

void uct_worker_progress_unregister_safe (

uct_worker_h worker,

uct_worker_cb_id_t ∗ id_p)

If ∗id_p is not equal to UCS_CALLBACKQ_ID_NULL, remove a callback which was previously added by
uct_worker_progress_register_safe. ∗id_p will be reset to UCS_CALLBACKQ_ID_NULL.

Parameters

in worker Handle to the worker whose progress should invoke the callback.

in,out id_p Points to a callback identifier which indicates the callback to remove. If ∗id_p is not
equal to UCS_CALLBACKQ_ID_NULL, the callback will be removed and ∗id_p will be
reset to UCS_CALLBACKQ_ID_NULL. If ∗id_p is equal to
UCS_CALLBACKQ_ID_NULL, no operation will be performed and ∗id_p will be left
unchanged.

Note

This function is thread safe.

6.2.3.3.5 uct_config_get()

ucs_status_t uct_config_get (

void ∗ config,

const char ∗ name,

char ∗ value,

size_t max)

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

184 Module Documentation

Parameters

in config Configuration to get from.

in name Configuration variable name.

out value Pointer to get value. Should be allocated/freed by caller.

in max Available memory space at value pointer.

Returns

UCS_OK if found, otherwise UCS_ERR_INVALID_PARAM or UCS_ERR_NO_ELEM if error.

6.2.3.3.6 uct_config_modify()

ucs_status_t uct_config_modify (

void ∗ config,

const char ∗ name,

const char ∗ value)

Parameters

in config Configuration to modify.

in name Configuration variable name.

in value Value to set.

Returns

Error code.

6.2.3.3.7 uct_worker_progress()

unsigned uct_worker_progress (

uct_worker_h worker)

This routine explicitly progresses any outstanding communication operations and active message requests.

Note

• In the current implementation, users MUST call this routine to receive the active message requests.

Parameters

in worker Handle to worker.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 185

Returns

Nonzero if any communication was progressed, zero otherwise.

Examples

uct_hello_world.c.

6.2.4 UCT Memory Domain

Data Structures

• struct uct_md_attr

Memory domain attributes. More...

• struct uct_md_mem_attr

Memory domain attributes. More...

• struct uct_allocated_memory

Describes a memory allocated by UCT. More...

• struct uct_rkey_bundle

Remote key with its type. More...

• struct uct_mem_alloc_params_t

Parameters for allocating memory using uct_mem_alloc. More...

• struct uct_md_attr.cap
• struct uct_mem_alloc_params_t.mds

Typedefs

• typedef enum uct_md_mem_attr_field uct_md_mem_attr_field_t

UCT MD memory attributes field mask.

• typedef struct uct_md_mem_attr uct_md_mem_attr_t

Memory domain attributes.

• typedef struct uct_allocated_memory uct_allocated_memory_t

Describes a memory allocated by UCT.

• typedef struct uct_rkey_bundle uct_rkey_bundle_t

Remote key with its type.

Enumerations

• enum uct_sockaddr_accessibility_t { UCT_SOCKADDR_ACC_LOCAL , UCT_SOCKADDR_ACC_REMOTE
}

Socket address accessibility type.

• enum {
UCT_MD_FLAG_ALLOC = UCS_BIT(0) , UCT_MD_FLAG_REG = UCS_BIT(1) , UCT_MD_FLAG_NEED_MEMH
= UCS_BIT(2) , UCT_MD_FLAG_NEED_RKEY = UCS_BIT(3) ,
UCT_MD_FLAG_ADVISE = UCS_BIT(4) , UCT_MD_FLAG_FIXED = UCS_BIT(5) , UCT_MD_FLAG_RKEY_PTR
= UCS_BIT(6) , UCT_MD_FLAG_SOCKADDR = UCS_BIT(7) ,
UCT_MD_FLAG_INVALIDATE = UCS_BIT(8) , UCT_MD_FLAG_EXPORTED_MKEY = UCS_BIT(9) ,
UCT_MD_FLAG_REG_DMABUF = UCS_BIT(10) , UCT_MD_FLAG_LAST = UCS_BIT(11) }

Memory domain capability flags.

• enum uct_md_mem_flags {
UCT_MD_MEM_FLAG_NONBLOCK = UCS_BIT(0) , UCT_MD_MEM_FLAG_FIXED = UCS_BIT(1) ,
UCT_MD_MEM_FLAG_LOCK = UCS_BIT(2) , UCT_MD_MEM_FLAG_HIDE_ERRORS = UCS_BIT(3)
,
UCT_MD_MEM_ACCESS_REMOTE_PUT = UCS_BIT(5) , UCT_MD_MEM_ACCESS_REMOTE_GET =

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

186 Module Documentation

UCS_BIT(6) , UCT_MD_MEM_ACCESS_REMOTE_ATOMIC = UCS_BIT(7) , UCT_MD_MEM_ACCESS_LOCAL_READ
= UCS_BIT(8) ,
UCT_MD_MEM_ACCESS_LOCAL_WRITE = UCS_BIT(9) , UCT_MD_MEM_SYMMETRIC_RKEY = UCS←↩

_BIT(10) , UCT_MD_MEM_GVA = UCS_BIT(11) , UCT_MD_MEM_ACCESS_ALL ,
UCT_MD_MEM_ACCESS_RMA }

Memory allocation/registration flags.

• enum uct_mem_advice_t { UCT_MADV_NORMAL = 0 , UCT_MADV_WILLNEED }

list of UCT memory use advice

• enum uct_md_mem_attr_field {
UCT_MD_MEM_ATTR_FIELD_MEM_TYPE = UCS_BIT(0) , UCT_MD_MEM_ATTR_FIELD_SYS_DEV =
UCS_BIT(1) , UCT_MD_MEM_ATTR_FIELD_BASE_ADDRESS = UCS_BIT(2) , UCT_MD_MEM_ATTR_FIELD_ALLOC_LENGTH
= UCS_BIT(3) ,
UCT_MD_MEM_ATTR_FIELD_DMABUF_FD = UCS_BIT(4) , UCT_MD_MEM_ATTR_FIELD_DMABUF_OFFSET
= UCS_BIT(5) }

UCT MD memory attributes field mask.

• enum uct_mem_alloc_params_field_t {
UCT_MEM_ALLOC_PARAM_FIELD_FLAGS = UCS_BIT(0) , UCT_MEM_ALLOC_PARAM_FIELD_ADDRESS
= UCS_BIT(1) , UCT_MEM_ALLOC_PARAM_FIELD_MEM_TYPE = UCS_BIT(2) , UCT_MEM_ALLOC_PARAM_FIELD_MDS
= UCS_BIT(3) ,
UCT_MEM_ALLOC_PARAM_FIELD_NAME = UCS_BIT(4) , UCT_MEM_ALLOC_PARAM_FIELD_SYS_DEVICE
= UCS_BIT(5) }

UCT allocation parameters specification field mask.

Functions

• ucs_status_t uct_md_mem_query (uct_md_h md, const void ∗address, size_t length, uct_md_mem_attr_t
∗mem_attr)

Query attributes of a given pointer.

• ucs_status_t uct_md_query (uct_md_h md, uct_md_attr_t ∗md_attr)

Query for memory domain attributes.

• ucs_status_t uct_md_mem_advise (uct_md_h md, uct_mem_h memh, void ∗addr, size_t length,
uct_mem_advice_t advice)

Give advice about the use of memory.

• ucs_status_t uct_md_mem_reg (uct_md_h md, void ∗address, size_t length, unsigned flags, uct_mem_h
∗memh_p)

Register memory for zero-copy sends and remote access.

• ucs_status_t uct_md_mem_dereg (uct_md_h md, uct_mem_h memh)

Undo the operation of uct_md_mem_reg().

• ucs_status_t uct_md_detect_memory_type (uct_md_h md, const void ∗addr, size_t length, ucs_memory_type_t
∗mem_type_p)

Detect memory type.

• ucs_status_t uct_mem_alloc (size_t length, const uct_alloc_method_t ∗methods, unsigned num_methods,
const uct_mem_alloc_params_t ∗params, uct_allocated_memory_t ∗mem)

Allocate memory for zero-copy communications and remote access.

• ucs_status_t uct_mem_free (const uct_allocated_memory_t ∗mem)

Release allocated memory.

• ucs_status_t uct_md_config_read (uct_component_h component, const char ∗env_prefix, const char
∗filename, uct_md_config_t ∗∗config_p)

Read the configuration for a memory domain.

• int uct_md_is_sockaddr_accessible (uct_md_h md, const ucs_sock_addr_t ∗sockaddr, uct_sockaddr_accessibility_t
mode)

Check if remote sock address is accessible from the memory domain.

• ucs_status_t uct_md_mkey_pack (uct_md_h md, uct_mem_h memh, void ∗rkey_buffer)

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 187

Pack a remote key.

• ucs_status_t uct_rkey_unpack (uct_component_h component, const void ∗rkey_buffer, uct_rkey_bundle_t
∗rkey_ob)

Unpack a remote key.

• ucs_status_t uct_rkey_ptr (uct_component_h component, uct_rkey_bundle_t ∗rkey_ob, uint64_t remote_←↩

addr, void ∗∗addr_p)

Get a local pointer to remote memory.

• ucs_status_t uct_rkey_release (uct_component_h component, const uct_rkey_bundle_t ∗rkey_ob)

Release a remote key.

6.2.4.1 Detailed Description

The Memory Domain abstracts resources required for network communication, which typically includes memory,
transport mechanisms, compute and network resources. It is an isolation mechanism that can be employed by the
applications for isolating resources between multiple programming models. The attributes of the Memory Domain
are defined by the structure uct_md_attr(). The communication and memory operations are defined in the context
of Memory Domain.

6.2.4.2 Data Structure Documentation

6.2.4.2.1 struct uct_md_attr

This structure defines the attributes of a Memory Domain which includes maximum memory that can be allocated,
credentials required for accessing the memory, CPU mask indicating the proximity of CPUs, and bitmaps indicating
the types of memory (CPU/CUDA/ROCM) that can be detected, allocated and accessed.

Examples

uct_hello_world.c.

Data Fields

struct uct_md_attr.cap cap

ucs_linear_func_t reg_cost Memory registration cost estimation
(time,seconds) as a linear function of the
buffer size.

char component_name[UCT_COMPONENT_NAME_MAX]Component name

size_t rkey_packed_size Size of buffer needed for packed rkey

ucs_cpu_set_t local_cpus Mask of CPUs near the resource

6.2.4.2.2 struct uct_md_mem_attr

This structure defines the attributes of a memory pointer which may include the memory type of the pointer, and the
system device that backs the pointer depending on the bit fields populated in field_mask.

Data Fields

uint64_t field_mask Mask of valid fields in this structure, using bits from
uct_md_mem_attr_field_t.

ucs_memory_type_t mem_type The type of memory. E.g. CPU/GPU memory or some other valid
type. If the md does not support sys_dev query, then
UCS_MEMORY_TYPE_UNKNOWN is returned.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

188 Module Documentation

Data Fields

ucs_sys_device_t sys_dev Index of the system device on which the buffer resides. eg:
NUMA/GPU If the md does not support sys_dev query, then
UCS_SYS_DEVICE_ID_UNKNOWN is returned.

void ∗ base_address Base address of the allocation to which the provided buffer belongs
to. If the md not support base address query, then the pointer passed
to uct_md_mem_query is returned as is.

size_t alloc_length Length of the whole allocation to which the provided buffer belongs to.
If the md not support querying allocation length, then the length
passed to uct_md_mem_query is returned as is.

int dmabuf_fd Dmabuf file descriptor to expose memory regions across devices.
Refer (https://01.←↩

org/linuxgraphics/gfx-docs/drm/driver-api/dma-buf.←↩

html). If the md does not support querying the fd object associated
with the region, then dmabuf_fd is set to
UCT_DMABUF_FD_INVALID by uct_md_mem_query(). It is the
responsibility of the user to close the returned fd using close (2) when
it's no longer needed.

size_t dmabuf_offset Offset of the given address from the start of the memory region
(identified by dmabuf_fd) backing the memory region being queried.

6.2.4.2.3 struct uct_allocated_memory

This structure describes the memory block which includes the address, size, and Memory Domain used for al-
location. This structure is passed to interface and the memory is allocated by memory allocation functions
uct_mem_alloc.

Data Fields

void ∗ address Address of allocated memory

size_t length Real size of allocated memory

uct_alloc_method_t method Method used to allocate the memory

ucs_memory_type_t mem_type type of allocated memory

uct_md_h md if method==MD: MD used to allocate the memory

uct_mem_h memh if method==MD: MD memory handle

ucs_sys_device_t sys_device System device for allocated memory

6.2.4.2.4 struct uct_rkey_bundle

This structure describes the credentials (typically key) and information required to access the remote memory by
the communication interfaces.

Data Fields

uct_rkey_t rkey Remote key descriptor, passed to RMA functions

void ∗ handle Handle, used internally for releasing the key

void ∗ type Remote key type

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

https://01.org/linuxgraphics/gfx-docs/drm/driver-api/dma-buf.html
https://01.org/linuxgraphics/gfx-docs/drm/driver-api/dma-buf.html
https://01.org/linuxgraphics/gfx-docs/drm/driver-api/dma-buf.html

6.2 Unified Communication Transport (UCT) API 189

6.2.4.2.5 struct uct_mem_alloc_params_t

Data Fields

uint64_t field_mask Mask of valid fields in this structure, using bits from
uct_mem_alloc_params_field_t. Fields not specified in
this mask will be ignored.

unsigned flags Memory allocation flags, see uct_md_mem_flags If
UCT_MEM_ALLOC_PARAM_FIELD_FLAGS is not
specified in field_mask, then
(UCT_MD_MEM_ACCESS_LOCAL_READ |
UCT_MD_MEM_ACCESS_LOCAL_WRITE) is used by
default.

void ∗ address If address is NULL, the underlying allocation routine will
choose the address at which to create the mapping. If
address is non-NULL and
UCT_MD_MEM_FLAG_FIXED is not set, the address
will be interpreted as a hint as to where to establish the
mapping. If address is non-NULL and
UCT_MD_MEM_FLAG_FIXED is set, then the specified
address is interpreted as a requirement. In this case, if
the mapping to the exact address cannot be made, the
allocation request fails.

ucs_memory_type_t mem_type Type of memory to be allocated.

struct uct_mem_alloc_params_t.mds mds

const char ∗ name Name of the allocated region, used to track memory
usage for debugging and profiling. If
UCT_MEM_ALLOC_PARAM_FIELD_NAME is not
specified in field_mask, then
¨anonymous-uct_mem_alloc¨ is used by default.

ucs_sys_device_t sys_device System device on which memory is to be allocated, or
UCS_SYS_DEVICE_ID_UNKNOWN to allow allocating
on any device.

6.2.4.2.6 struct uct_md_attr.cap

Data Fields

uint64_t max_alloc Maximal allocation size
size_t max_reg Maximal registration size

uint64_t flags UCT_MD_FLAG_xx

uint64_t reg_mem_types Bitmap of memory types that Memory Domain can be registered with

uint64_t detect_mem_types Bitmap of memory types that Memory Domain can detect if address belongs
to it

uint64_t alloc_mem_types Bitmap of memory types that Memory Domain can allocate memory on

uint64_t access_mem_types Memory types that Memory Domain can access

6.2.4.2.7 struct uct_mem_alloc_params_t.mds

Data Fields

const uct_md_h ∗ mds Array of memory domains to attempt to allocate the memory with, for MD
allocation method.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

190 Module Documentation

Data Fields

unsigned count Length of 'mds' array. May be empty, in such case 'mds' may be NULL, and MD
allocation method will be skipped.

6.2.4.3 Typedef Documentation

6.2.4.3.1 uct_md_mem_attr_field_t

typedef enum uct_md_mem_attr_field uct_md_mem_attr_field_t

The enumeration allows specifying which fields in uct_md_mem_attr_t are present.

6.2.4.3.2 uct_md_mem_attr_t

typedef struct uct_md_mem_attr uct_md_mem_attr_t

This structure defines the attributes of a memory pointer which may include the memory type of the pointer, and the
system device that backs the pointer depending on the bit fields populated in field_mask.

6.2.4.3.3 uct_allocated_memory_t

typedef struct uct_allocated_memory uct_allocated_memory_t

This structure describes the memory block which includes the address, size, and Memory Domain used for al-
location. This structure is passed to interface and the memory is allocated by memory allocation functions
uct_mem_alloc.

6.2.4.3.4 uct_rkey_bundle_t

typedef struct uct_rkey_bundle uct_rkey_bundle_t

This structure describes the credentials (typically key) and information required to access the remote memory by
the communication interfaces.

6.2.4.4 Enumeration Type Documentation

6.2.4.4.1 uct_sockaddr_accessibility_t

enum uct_sockaddr_accessibility_t

Enumerator

UCT_SOCKADDR_ACC_LOCAL Check if local address exists. Address should belong to a local network
interface

UCT_SOCKADDR_ACC_REMOTE Check if remote address can be reached. Address is routable from one
of the local network interfaces

6.2.4.4.2 anonymous enum

anonymous enum

Enumerator

UCT_MD_FLAG_ALLOC MD supports memory allocation

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 191

Enumerator

UCT_MD_FLAG_REG MD supports memory registration

UCT_MD_FLAG_NEED_MEMH The transport needs a valid local memory handle for zero-copy
operations

UCT_MD_FLAG_NEED_RKEY The transport needs a valid remote memory key for remote memory
operations

UCT_MD_FLAG_ADVISE MD supports memory advice

UCT_MD_FLAG_FIXED MD supports memory allocation with fixed address

UCT_MD_FLAG_RKEY_PTR MD supports direct access to remote memory via a pointer that is
returned by uct_rkey_ptr.

Note

This flag is deprecated and replaced by
UCT_COMPONENT_FLAG_RKEY_PTR.

UCT_MD_FLAG_SOCKADDR MD support for client-server connection establishment via sockaddr

UCT_MD_FLAG_INVALIDATE MD supports memory invalidation.

Note

This flag is equivalent to the combination of
UCT_MD_FLAG_INVALIDATE_RMA and
UCT_MD_FLAG_INVALIDATE_AMO for uct_md_attr_v2_t.flags

UCT_MD_FLAG_EXPORTED_MKEY MD supports exporting memory keys with another process using the
same device or attaching to an exported memory key.

UCT_MD_FLAG_REG_DMABUF MD supports registering a dmabuf file descriptor.

UCT_MD_FLAG_LAST The enum must not be extended. Any additional flags must be
defined in API v2 uct_md_flags_v2_t.

6.2.4.4.3 uct_md_mem_flags

enum uct_md_mem_flags

Enumerator

UCT_MD_MEM_FLAG_NONBLOCK Hint to perform non-blocking allocation/registration: page
mapping may be deferred until it is accessed by the CPU or
a transport.

UCT_MD_MEM_FLAG_FIXED Place the mapping at exactly defined address.

UCT_MD_MEM_FLAG_LOCK Registered memory should be locked. May incur extra cost
for registration, but memory access is usually faster.

UCT_MD_MEM_FLAG_HIDE_ERRORS Hide errors on memory registration and allocation. If this flag
is set, no error messages will be printed.

UCT_MD_MEM_ACCESS_REMOTE_PUT Enable remote put access.

UCT_MD_MEM_ACCESS_REMOTE_GET Enable remote get access.

UCT_MD_MEM_ACCESS_REMOTE_ATOMIC Enable remote atomic access.
UCT_MD_MEM_ACCESS_LOCAL_READ Enable local read access.

UCT_MD_MEM_ACCESS_LOCAL_WRITE Enable local write access.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

192 Module Documentation

Enumerator

UCT_MD_MEM_SYMMETRIC_RKEY Register the memory region so its remote access key would
likely be equal to remote access keys received from other
peers, when compared with uct_rkey_compare. This flag is
a hint. When remote access keys received from different
peers are compared equal, they can be used
interchangeably, avoiding the need to keep all of them in
memory.

UCT_MD_MEM_GVA Register global VA to access all process virtual address
space.

UCT_MD_MEM_ACCESS_ALL Enable local and remote access for all operations.

UCT_MD_MEM_ACCESS_RMA Enable local and remote access for put and get operations.

6.2.4.4.4 uct_mem_advice_t

enum uct_mem_advice_t

Enumerator

UCT_MADV_NORMAL No special treatment

UCT_MADV_WILLNEED can be used on the memory mapped with UCT_MD_MEM_FLAG_NONBLOCK to
speed up memory mapping and to avoid page faults when the memory is
accessed for the first time.

6.2.4.4.5 uct_md_mem_attr_field

enum uct_md_mem_attr_field

The enumeration allows specifying which fields in uct_md_mem_attr_t are present.

Enumerator

UCT_MD_MEM_ATTR_FIELD_MEM_TYPE Indicate if memory type is populated. E.g. CPU/GPU

UCT_MD_MEM_ATTR_FIELD_SYS_DEV Indicate if details of system device backing the pointer
are populated. For example: GPU device, NUMA
domain, etc.

UCT_MD_MEM_ATTR_FIELD_BASE_ADDRESS Request base address of the allocation to which the
buffer belongs.

UCT_MD_MEM_ATTR_FIELD_ALLOC_LENGTH Request the whole length of the allocation to which
the buffer belongs.

UCT_MD_MEM_ATTR_FIELD_DMABUF_FD Request a cross-device dmabuf file descriptor that
represents a memory region, and can be used to
register the region with another memory domain.

UCT_MD_MEM_ATTR_FIELD_DMABUF_OFFSET Request the offset of the provided virtual address
relative to the beginning of its backing dmabuf region.

6.2.4.4.6 uct_mem_alloc_params_field_t

enum uct_mem_alloc_params_field_t

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 193

The enumeration allows specifying which fields in uct_mem_alloc_params_t are present.

Enumerator

UCT_MEM_ALLOC_PARAM_FIELD_FLAGS Enables uct_mem_alloc_params_t::flags

UCT_MEM_ALLOC_PARAM_FIELD_ADDRESS Enables uct_mem_alloc_params_t::address

UCT_MEM_ALLOC_PARAM_FIELD_MEM_TYPE Enables uct_mem_alloc_params_t::mem_type

UCT_MEM_ALLOC_PARAM_FIELD_MDS Enables uct_mem_alloc_params_t::mds

UCT_MEM_ALLOC_PARAM_FIELD_NAME Enables uct_mem_alloc_params_t::name

UCT_MEM_ALLOC_PARAM_FIELD_SYS_DEVICE Enables uct_mem_alloc_params_t::sys_device

6.2.4.5 Function Documentation

6.2.4.5.1 uct_md_mem_query()

ucs_status_t uct_md_mem_query (

uct_md_h md,

const void ∗ address,

size_t length,

uct_md_mem_attr_t ∗ mem_attr)

Return attributes such as memory type, base address, allocation length, and system device for the given pointer of
specific length.

Parameters

in md Memory domain to run the query on. This function returns an error if the md does not
recognize the pointer.

in address The address of the pointer. Must be non-NULL else UCS_ERR_INVALID_PARAM
error is returned.

in length Length of the memory region to examine. Must be nonzero else
UCS_ERR_INVALID_PARAM error is returned.

in,out mem_attr If successful, filled with ptr attributes.

Returns

UCS_OK if at least one attribute is successfully queried otherwise an error code as defined by ucs_status_t is
returned.

6.2.4.5.2 uct_md_query()

ucs_status_t uct_md_query (

uct_md_h md,

uct_md_attr_t ∗ md_attr)

Parameters

in md Memory domain to query.

out md_attr Filled with memory domain attributes.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

194 Module Documentation

Examples

uct_hello_world.c.

6.2.4.5.3 uct_md_mem_advise()

ucs_status_t uct_md_mem_advise (

uct_md_h md,

uct_mem_h memh,

void ∗ addr,

size_t length,

uct_mem_advice_t advice)

This routine advises the UCT about how to handle memory range beginning at address and size of length bytes.
This call does not influence the semantics of the application, but may influence its performance. The advice may be
ignored.

Parameters

in md Memory domain memory was allocated or registered on.

in memh Memory handle, as returned from uct_mem_alloc

in addr Memory base address. Memory range must belong to the memh

in length Length of memory to advise. Must be >0.

in advice Memory use advice as defined in the uct_mem_advice_t list

6.2.4.5.4 uct_md_mem_reg()

ucs_status_t uct_md_mem_reg (

uct_md_h md,

void ∗ address,

size_t length,

unsigned flags,

uct_mem_h ∗ memh_p)

Register memory on the memory domain. In order to use this function, MD must support UCT_MD_FLAG_REG
flag.

Parameters

in md Memory domain to register memory on.

in address Memory to register.

in length Size of memory to register. Must be >0.

in flags Memory allocation flags, see uct_md_mem_flags.

out memh←↩

_p
Filled with handle for allocated region.

Examples

uct_hello_world.c.

6.2.4.5.5 uct_md_mem_dereg()

ucs_status_t uct_md_mem_dereg (

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 195

uct_md_h md,

uct_mem_h memh)

Parameters

in md Memory domain which was used to register the memory.

in memh Local access key to memory region.

Examples

uct_hello_world.c.

6.2.4.5.6 uct_md_detect_memory_type()

ucs_status_t uct_md_detect_memory_type (

uct_md_h md,

const void ∗ addr,

size_t length,

ucs_memory_type_t ∗ mem_type_p)

Parameters

in md Memory domain to detect memory type

in addr Memory address to detect.

in length Size of memory

out mem_type←↩

_p
Filled with memory type of the address range if function succeeds

Returns

UCS_OK If memory type is successfully detected UCS_ERR_INVALID_ADDR If failed to detect memory type

6.2.4.5.7 uct_mem_alloc()

ucs_status_t uct_mem_alloc (

size_t length,

const uct_alloc_method_t ∗ methods,

unsigned num_methods,

const uct_mem_alloc_params_t ∗ params,

uct_allocated_memory_t ∗ mem)

Allocate potentially registered memory.

Parameters

in length The minimal size to allocate. The actual size may be larger, for example because of
alignment restrictions. Must be >0.

in methods Array of memory allocation methods to attempt. Each of the provided allocation
methods will be tried in array order, to perform the allocation, until one succeeds.
Whenever the MD method is encountered, each of the provided MDs will be tried in
array order, to allocate the memory, until one succeeds, or they are exhausted. In
this case the next allocation method from the initial list will be attempted.

in num_methods Length of 'methods' array.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

196 Module Documentation

Parameters

in params Memory allocation characteristics, see uct_mem_alloc_params_t.

out mem In case of success, filled with information about the allocated memory.
uct_allocated_memory_t

6.2.4.5.8 uct_mem_free()

ucs_status_t uct_mem_free (

const uct_allocated_memory_t ∗ mem)

Release the memory allocated by uct_mem_alloc.

Parameters

in mem Description of allocated memory, as returned from uct_mem_alloc.

6.2.4.5.9 uct_md_config_read()

ucs_status_t uct_md_config_read (

uct_component_h component,

const char ∗ env_prefix,

const char ∗ filename,

uct_md_config_t ∗∗ config_p)

Parameters

in component Read the configuration of this component.

in env_prefix If non-NULL, search for environment variables starting with this UCT_<prefix>_.
Otherwise, search for environment variables starting with just UCT_.

in filename If non-NULL, read configuration from this file. If the file does not exist, it will be ignored.

out config_p Filled with a pointer to the configuration.

Returns

Error code.

Examples

uct_hello_world.c.

6.2.4.5.10 uct_md_is_sockaddr_accessible()

int uct_md_is_sockaddr_accessible (

uct_md_h md,

const ucs_sock_addr_t ∗ sockaddr,

uct_sockaddr_accessibility_t mode)

This function checks if a remote sock address can be accessed from a local memory domain. Accessibility can be
checked in local or remote mode.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 197

Parameters

in md Memory domain to check accessibility from. This memory domain must support the
UCT_MD_FLAG_SOCKADDR flag.

in sockaddr Socket address to check accessibility to.

in mode Mode for checking accessibility, as defined in uct_sockaddr_accessibility_t. Indicates if
accessibility is tested on the server side - for binding to the given sockaddr, or on the client
side - for connecting to the given remote peer's sockaddr.

Returns

Nonzero if accessible, 0 if inaccessible.

6.2.4.5.11 uct_md_mkey_pack()

ucs_status_t uct_md_mkey_pack (

uct_md_h md,

uct_mem_h memh,

void ∗ rkey_buffer)

Parameters

in md Handle to memory domain.

in memh Local key, whose remote key should be packed.

out rkey_buffer Filled with packed remote key.

Returns

Error code.

6.2.4.5.12 uct_rkey_unpack()

ucs_status_t uct_rkey_unpack (

uct_component_h component,

const void ∗ rkey_buffer,

uct_rkey_bundle_t ∗ rkey_ob)

Parameters

in component Component on which to unpack the remote key.

in rkey_buffer Packed remote key buffer.

out rkey_ob Filled with the unpacked remote key and its type.

Note

The remote key must be unpacked with the same component that was used to pack it. For example, if a remote
device address on the remote memory domain which was used to pack the key is reachable by a transport
on a local component, then that component is eligible to unpack the key. If the remote key buffer cannot be
unpacked with the given component, UCS_ERR_INVALID_PARAM will be returned.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

198 Module Documentation

Returns

Error code.

6.2.4.5.13 uct_rkey_ptr()

ucs_status_t uct_rkey_ptr (

uct_component_h component,

uct_rkey_bundle_t ∗ rkey_ob,

uint64_t remote_addr,

void ∗∗ addr_p)

This routine returns a local pointer to the remote memory described by the rkey bundle. The component must
support UCT_COMPONENT_FLAG_RKEY_PTR flag.

Parameters

in component Component on which to obtain the pointer to the remote key.

in rkey_ob A remote key bundle as returned by the uct_rkey_unpack function.

in remote_addr A remote address within the memory area described by the rkey_ob.

out addr_p A pointer that can be used for direct access to the remote memory.

Note

The component used to obtain a local pointer to the remote memory must be the same component that was
used to pack the remote key. See notes section for uct_rkey_unpack.

Returns

Error code if the remote memory cannot be accessed directly or the remote address is not valid.

6.2.4.5.14 uct_rkey_release()

ucs_status_t uct_rkey_release (

uct_component_h component,

const uct_rkey_bundle_t ∗ rkey_ob)

Parameters

in component Component which was used to unpack the remote key.

in rkey_ob Remote key to release.

6.2.5 UCT Active messages

Typedefs

• typedef ucs_status_t(∗ uct_am_callback_t) (void ∗arg, void ∗data, size_t length, unsigned flags)

Callback to process incoming active message.

• typedef void(∗ uct_am_tracer_t) (void ∗arg, uct_am_trace_type_t type, uint8_t id, const void ∗data, size_t
length, char ∗buffer, size_t max)

Callback to trace active messages.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 199

Enumerations

• enum uct_msg_flags { UCT_SEND_FLAG_SIGNALED = UCS_BIT(0) , UCT_SEND_FLAG_PEER_CHECK
= UCS_BIT(1) }

Flags for active message send operation.

• enum uct_am_trace_type {
UCT_AM_TRACE_TYPE_SEND , UCT_AM_TRACE_TYPE_RECV , UCT_AM_TRACE_TYPE_SEND_DROP
, UCT_AM_TRACE_TYPE_RECV_DROP ,
UCT_AM_TRACE_TYPE_LAST }

Trace types for active message tracer.

Functions

• ucs_status_t uct_iface_set_am_handler (uct_iface_h iface, uint8_t id, uct_am_callback_t cb, void ∗arg,
uint32_t flags)

Set active message handler for the interface.

• ucs_status_t uct_iface_set_am_tracer (uct_iface_h iface, uct_am_tracer_t tracer, void ∗arg)

Set active message tracer for the interface.

• void uct_iface_release_desc (void ∗desc)

Release AM descriptor.

• ucs_status_t uct_ep_am_short (uct_ep_h ep, uint8_t id, uint64_t header, const void ∗payload, unsigned
length)

• ucs_status_t uct_ep_am_short_iov (uct_ep_h ep, uint8_t id, const uct_iov_t ∗iov, size_t iovcnt)

Short io-vector send operation.

• ssize_t uct_ep_am_bcopy (uct_ep_h ep, uint8_t id, uct_pack_callback_t pack_cb, void ∗arg, unsigned flags)
• ucs_status_t uct_ep_am_zcopy (uct_ep_h ep, uint8_t id, const void ∗header, unsigned header_length, const

uct_iov_t ∗iov, size_t iovcnt, unsigned flags, uct_completion_t ∗comp)

Send active message while avoiding local memory copy.

6.2.5.1 Detailed Description

Defines active message functions.

6.2.5.2 Typedef Documentation

6.2.5.2.1 uct_am_callback_t

typedef ucs_status_t(∗ uct_am_callback_t) (void ∗arg, void ∗data, size_t length, unsigned flags)

When the callback is called, flags indicates how data should be handled. If flags contain UCT_CB_PARAM_FLAG_DESC
value, it means data is part of a descriptor which must be released later by uct_iface_release_desc by the user if
the callback returns UCS_INPROGRESS.

Parameters

in arg User-defined argument.

in data Points to the received data. This may be a part of a descriptor which may be released later.

in length Length of data.

in flags Mask with uct_cb_param_flags

Note

This callback could be set and released by uct_iface_set_am_handler function.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

200 Module Documentation

Return values

UCS_OK - descriptor was consumed, and can be released by the caller.

UCS_INPROGRESS - descriptor is owned by the callee, and would be released later. Supported only if flags
contain UCT_CB_PARAM_FLAG_DESC value. Otherwise, this is an error.

6.2.5.2.2 uct_am_tracer_t

typedef void(∗ uct_am_tracer_t) (void ∗arg, uct_am_trace_type_t type, uint8_t id, const void

∗data, size_t length, char ∗buffer, size_t max)

Writes a string which represents active message contents into 'buffer'.

Parameters

in arg User-defined argument.

in type Message type.

in id Active message id.

in data Points to the received data.
in length Length of data.

out buffer Filled with a debug information string.

in max Maximal length of the string.

6.2.5.3 Enumeration Type Documentation

6.2.5.3.1 uct_msg_flags

enum uct_msg_flags

Enumerator

UCT_SEND_FLAG_SIGNALED Trigger UCT_EVENT_RECV_SIG event on remote side. Make best
effort attempt to avoid triggering UCT_EVENT_RECV event. Ignored if
not supported by interface.

UCT_SEND_FLAG_PEER_CHECK Forces checking connectivity to a peer. If the connection is not alive, an
error callback will be invoked. If the flag is not set, there is no guarantee
that a connectivity error could be detected.

6.2.5.3.2 uct_am_trace_type

enum uct_am_trace_type

Enumerator

UCT_AM_TRACE_TYPE_SEND
UCT_AM_TRACE_TYPE_RECV

UCT_AM_TRACE_TYPE_SEND_DROP
UCT_AM_TRACE_TYPE_RECV_DROP

UCT_AM_TRACE_TYPE_LAST

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 201

6.2.5.4 Function Documentation

6.2.5.4.1 uct_iface_set_am_handler()

ucs_status_t uct_iface_set_am_handler (

uct_iface_h iface,

uint8_t id,

uct_am_callback_t cb,

void ∗ arg,

uint32_t flags)

Only one handler can be set of each active message ID, and setting a handler replaces the previous value. If cb ==
NULL, the current handler is removed.

Parameters

in iface Interface to set the active message handler for.

in id Active message id. Must be 0..UCT_AM_ID_MAX-1.

in cb Active message callback. NULL to clear.

in arg Active message argument.

in flags Required callback flags

Returns

error code if the interface does not support active messages or requested callback flags

Examples

uct_hello_world.c.

6.2.5.4.2 uct_iface_set_am_tracer()

ucs_status_t uct_iface_set_am_tracer (

uct_iface_h iface,

uct_am_tracer_t tracer,

void ∗ arg)

Sets a function which dumps active message debug information to a buffer, which is printed every time an active
message is sent or received, when data tracing is on. Without the tracer, only transport-level information is printed.

Parameters

in iface Interface to set the active message tracer for.

in tracer Active message tracer. NULL to clear.

in arg Tracer custom argument.

6.2.5.4.3 uct_iface_release_desc()

void uct_iface_release_desc (

void ∗ desc)

Release active message descriptor desc, which was passed to the active message callback, and owned by the
callee.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

202 Module Documentation

Parameters

in desc Descriptor to release.

Examples

uct_hello_world.c.

6.2.5.4.4 uct_ep_am_short()

ucs_status_t uct_ep_am_short (

uct_ep_h ep,

uint8_t id,

uint64_t header,

const void ∗ payload,

unsigned length)

Examples

uct_hello_world.c.

6.2.5.4.5 uct_ep_am_short_iov()

ucs_status_t uct_ep_am_short_iov (

uct_ep_h ep,

uint8_t id,

const uct_iov_t ∗ iov,

size_t iovcnt)

This routine sends a message using short protocol. The input data in iov array of uct_iov_t structures is sent to
remote side to contiguous buffer keeping the order of the data in the array.

Parameters

in ep Destination endpoint handle.

in id Active message id. Must be in range 0..UCT_AM_ID_MAX-1.

in iov Points to an array of uct_iov_t structures. The iov pointer must be a valid address of an array of
uct_iov_t structures. A particular structure pointer must be a valid address. A NULL terminated
array is not required. stride and count fields in uct_iov_t structure are ignored in current
implementation. The total size of the data buffers in the array is limited by
uct_iface_attr::cap::am::max_short.

in iovcnt Size of the iov data uct_iov_t structures array. If iovcnt is zero, the data is considered empty.
iovcnt is limited by uct_iface_attr::cap::am::max_iov.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 203

Returns

UCS_OK Operation completed successfully.

UCS_ERR_NO_RESOURCE Could not start the operation due to lack of send resources.

otherwise Error code.

6.2.5.4.6 uct_ep_am_bcopy()

ssize_t uct_ep_am_bcopy (

uct_ep_h ep,

uint8_t id,

uct_pack_callback_t pack_cb,

void ∗ arg,

unsigned flags)

Examples

uct_hello_world.c.

6.2.5.4.7 uct_ep_am_zcopy()

ucs_status_t uct_ep_am_zcopy (

uct_ep_h ep,

uint8_t id,

const void ∗ header,

unsigned header_length,

const uct_iov_t ∗ iov,

size_t iovcnt,

unsigned flags,

uct_completion_t ∗ comp)

The input data in iov array of uct_iov_t structures sent to remote side (¨gather output¨). Buffers in iov are processed
in array order. This means that the function complete iov[0] before proceeding to iov[1], and so on.

Parameters

in ep Destination endpoint handle.

in id Active message id. Must be in range 0..UCT_AM_ID_MAX-1.

in header Active message header.

in header_length Active message header length in bytes.

in iov Points to an array of uct_iov_t structures. The iov pointer must be a valid address of
an array of uct_iov_t structures. A particular structure pointer must be a valid address.
A NULL terminated array is not required.

in iovcnt Size of the iov data uct_iov_t structures array. If iovcnt is zero, the data is considered
empty. iovcnt is limited by uct_iface_attr::cap::am::max_iov.

in flags Active message flags, see uct_msg_flags.

in comp Completion handle as defined by uct_completion_t.

Returns

UCS_OK Operation completed successfully.

UCS_INPROGRESS Some communication operations are still in progress. If non-NULL comp is provided, it
will be updated upon completion of these operations.

UCS_ERR_NO_RESOURCE Could not start the operation due to lack of send resources.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

204 Module Documentation

Note

If the operation returns UCS_INPROGRESS, the memory buffers pointed to by iov array must not be modified
until the operation is completed by comp. header can be released or changed.

Examples

uct_hello_world.c.

6.2.6 UCT Remote memory access operations

Functions

• ucs_status_t uct_ep_put_short (uct_ep_h ep, const void ∗buffer, unsigned length, uint64_t remote_addr,
uct_rkey_t rkey)

• ssize_t uct_ep_put_bcopy (uct_ep_h ep, uct_pack_callback_t pack_cb, void ∗arg, uint64_t remote_addr,
uct_rkey_t rkey)

• ucs_status_t uct_ep_put_zcopy (uct_ep_h ep, const uct_iov_t ∗iov, size_t iovcnt, uint64_t remote_addr,
uct_rkey_t rkey, uct_completion_t ∗comp)

Write data to remote memory while avoiding local memory copy.

• ucs_status_t uct_ep_get_short (uct_ep_h ep, void ∗buffer, unsigned length, uint64_t remote_addr, uct_rkey_t
rkey)

• ucs_status_t uct_ep_get_bcopy (uct_ep_h ep, uct_unpack_callback_t unpack_cb, void ∗arg, size_t length,
uint64_t remote_addr, uct_rkey_t rkey, uct_completion_t ∗comp)

• ucs_status_t uct_ep_get_zcopy (uct_ep_h ep, const uct_iov_t ∗iov, size_t iovcnt, uint64_t remote_addr,
uct_rkey_t rkey, uct_completion_t ∗comp)

Read data from remote memory while avoiding local memory copy.

6.2.6.1 Detailed Description

Defines remote memory access operations.

6.2.6.2 Function Documentation

6.2.6.2.1 uct_ep_put_short()

ucs_status_t uct_ep_put_short (

uct_ep_h ep,

const void ∗ buffer,

unsigned length,

uint64_t remote_addr,

uct_rkey_t rkey)

6.2.6.2.2 uct_ep_put_bcopy()

ssize_t uct_ep_put_bcopy (

uct_ep_h ep,

uct_pack_callback_t pack_cb,

void ∗ arg,

uint64_t remote_addr,

uct_rkey_t rkey)

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 205

6.2.6.2.3 uct_ep_put_zcopy()

ucs_status_t uct_ep_put_zcopy (

uct_ep_h ep,

const uct_iov_t ∗ iov,

size_t iovcnt,

uint64_t remote_addr,

uct_rkey_t rkey,

uct_completion_t ∗ comp)

The input data in iov array of uct_iov_t structures sent to remote address (¨gather output¨). Buffers in iov are
processed in array order. This means that the function complete iov[0] before proceeding to iov[1], and so on.

Parameters

in ep Destination endpoint handle.

in iov Points to an array of uct_iov_t structures. The iov pointer must be a valid address of an
array of uct_iov_t structures. A particular structure pointer must be a valid address. A
NULL terminated array is not required.

in iovcnt Size of the iov data uct_iov_t structures array. If iovcnt is zero, the data is considered
empty. iovcnt is limited by uct_iface_attr::cap::put::max_iov.

in remote_addr Remote address to place the iov data.

in rkey Remote key descriptor provided by uct_rkey_unpack

in comp Completion handle as defined by uct_completion_t.

Returns

UCS_INPROGRESS Some communication operations are still in progress. If non-NULL comp is provided, it
will be updated upon completion of these operations.

6.2.6.2.4 uct_ep_get_short()

ucs_status_t uct_ep_get_short (

uct_ep_h ep,

void ∗ buffer,

unsigned length,

uint64_t remote_addr,

uct_rkey_t rkey)

6.2.6.2.5 uct_ep_get_bcopy()

ucs_status_t uct_ep_get_bcopy (

uct_ep_h ep,

uct_unpack_callback_t unpack_cb,

void ∗ arg,

size_t length,

uint64_t remote_addr,

uct_rkey_t rkey,

uct_completion_t ∗ comp)

6.2.6.2.6 uct_ep_get_zcopy()

ucs_status_t uct_ep_get_zcopy (

uct_ep_h ep,

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

206 Module Documentation

const uct_iov_t ∗ iov,

size_t iovcnt,

uint64_t remote_addr,

uct_rkey_t rkey,

uct_completion_t ∗ comp)

The output data in iov array of uct_iov_t structures received from remote address (¨scatter input¨). Buffers in iov are
processed in array order. This means that the function complete iov[0] before proceeding to iov[1], and so on.

Parameters

in ep Destination endpoint handle.

in iov Points to an array of uct_iov_t structures. The iov pointer must be a valid address of an
array of uct_iov_t structures. A particular structure pointer must be a valid address. A
NULL terminated array is not required.

in iovcnt Size of the iov data uct_iov_t structures array. If iovcnt is zero, the data is considered
empty. iovcnt is limited by uct_iface_attr::cap::get::max_iov.

in remote_addr Remote address of the data placed to the iov.

in rkey Remote key descriptor provided by uct_rkey_unpack

in comp Completion handle as defined by uct_completion_t.

Returns

UCS_INPROGRESS Some communication operations are still in progress. If non-NULL comp is provided, it
will be updated upon completion of these operations.

6.2.7 UCT Atomic operations

Functions

• ucs_status_t uct_ep_atomic_cswap64 (uct_ep_h ep, uint64_t compare, uint64_t swap, uint64_t remote_addr,
uct_rkey_t rkey, uint64_t ∗result, uct_completion_t ∗comp)

• ucs_status_t uct_ep_atomic_cswap32 (uct_ep_h ep, uint32_t compare, uint32_t swap, uint64_t remote_addr,
uct_rkey_t rkey, uint32_t ∗result, uct_completion_t ∗comp)

• ucs_status_t uct_ep_atomic32_post (uct_ep_h ep, uct_atomic_op_t opcode, uint32_t value, uint64_←↩

t remote_addr, uct_rkey_t rkey)
• ucs_status_t uct_ep_atomic64_post (uct_ep_h ep, uct_atomic_op_t opcode, uint64_t value, uint64_←↩

t remote_addr, uct_rkey_t rkey)
• ucs_status_t uct_ep_atomic32_fetch (uct_ep_h ep, uct_atomic_op_t opcode, uint32_t value, uint32_t ∗result,

uint64_t remote_addr, uct_rkey_t rkey, uct_completion_t ∗comp)
• ucs_status_t uct_ep_atomic64_fetch (uct_ep_h ep, uct_atomic_op_t opcode, uint64_t value, uint64_t ∗result,

uint64_t remote_addr, uct_rkey_t rkey, uct_completion_t ∗comp)

6.2.7.1 Detailed Description

Defines atomic operations.

6.2.7.2 Function Documentation

6.2.7.2.1 uct_ep_atomic_cswap64()

ucs_status_t uct_ep_atomic_cswap64 (

uct_ep_h ep,

uint64_t compare,

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 207

uint64_t swap,

uint64_t remote_addr,

uct_rkey_t rkey,

uint64_t ∗ result,

uct_completion_t ∗ comp)

6.2.7.2.2 uct_ep_atomic_cswap32()

ucs_status_t uct_ep_atomic_cswap32 (

uct_ep_h ep,

uint32_t compare,

uint32_t swap,

uint64_t remote_addr,

uct_rkey_t rkey,

uint32_t ∗ result,

uct_completion_t ∗ comp)

6.2.7.2.3 uct_ep_atomic32_post()

ucs_status_t uct_ep_atomic32_post (

uct_ep_h ep,

uct_atomic_op_t opcode,

uint32_t value,

uint64_t remote_addr,

uct_rkey_t rkey)

6.2.7.2.4 uct_ep_atomic64_post()

ucs_status_t uct_ep_atomic64_post (

uct_ep_h ep,

uct_atomic_op_t opcode,

uint64_t value,

uint64_t remote_addr,

uct_rkey_t rkey)

6.2.7.2.5 uct_ep_atomic32_fetch()

ucs_status_t uct_ep_atomic32_fetch (

uct_ep_h ep,

uct_atomic_op_t opcode,

uint32_t value,

uint32_t ∗ result,

uint64_t remote_addr,

uct_rkey_t rkey,

uct_completion_t ∗ comp)

6.2.7.2.6 uct_ep_atomic64_fetch()

ucs_status_t uct_ep_atomic64_fetch (

uct_ep_h ep,

uct_atomic_op_t opcode,

uint64_t value,

uint64_t ∗ result,

uint64_t remote_addr,

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

208 Module Documentation

uct_rkey_t rkey,

uct_completion_t ∗ comp)

6.2.8 UCT Tag matching operations

Data Structures

• struct uct_tag_context

Posted tag context.

Typedefs

• typedef ucs_status_t(∗ uct_tag_unexp_eager_cb_t) (void ∗arg, void ∗data, size_t length, unsigned flags,
uct_tag_t stag, uint64_t imm, void ∗∗context)

Callback to process unexpected eager tagged message.

• typedef ucs_status_t(∗ uct_tag_unexp_rndv_cb_t) (void ∗arg, unsigned flags, uint64_t stag, const void
∗header, unsigned header_length, uint64_t remote_addr, size_t length, const void ∗rkey_buf)

Callback to process unexpected rendezvous tagged message.

Functions

• ucs_status_t uct_ep_tag_eager_short (uct_ep_h ep, uct_tag_t tag, const void ∗data, size_t length)

Short eager tagged-send operation.

• ssize_t uct_ep_tag_eager_bcopy (uct_ep_h ep, uct_tag_t tag, uint64_t imm, uct_pack_callback_t pack_cb,
void ∗arg, unsigned flags)

Bcopy eager tagged-send operation.

• ucs_status_t uct_ep_tag_eager_zcopy (uct_ep_h ep, uct_tag_t tag, uint64_t imm, const uct_iov_t ∗iov, size←↩

_t iovcnt, unsigned flags, uct_completion_t ∗comp)

Zcopy eager tagged-send operation.

• ucs_status_ptr_t uct_ep_tag_rndv_zcopy (uct_ep_h ep, uct_tag_t tag, const void ∗header, unsigned
header_length, const uct_iov_t ∗iov, size_t iovcnt, unsigned flags, uct_completion_t ∗comp)

Rendezvous tagged-send operation.

• ucs_status_t uct_ep_tag_rndv_cancel (uct_ep_h ep, void ∗op)

Cancel outstanding rendezvous operation.

• ucs_status_t uct_ep_tag_rndv_request (uct_ep_h ep, uct_tag_t tag, const void ∗header, unsigned header←↩

_length, unsigned flags)

Send software rendezvous request.

• ucs_status_t uct_iface_tag_recv_zcopy (uct_iface_h iface, uct_tag_t tag, uct_tag_t tag_mask, const uct_iov_t
∗iov, size_t iovcnt, uct_tag_context_t ∗ctx)

Post a tag to a transport interface.

• ucs_status_t uct_iface_tag_recv_cancel (uct_iface_h iface, uct_tag_context_t ∗ctx, int force)

Cancel a posted tag.

6.2.8.1 Detailed Description

Defines tag matching operations.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 209

6.2.8.2 Typedef Documentation

6.2.8.2.1 uct_tag_unexp_eager_cb_t

typedef ucs_status_t(∗ uct_tag_unexp_eager_cb_t) (void ∗arg, void ∗data, size_t length, unsigned

flags, uct_tag_t stag, uint64_t imm, void ∗∗context)

This callback is invoked when tagged message sent by eager protocol has arrived and no corresponding tag has
been posted.

Note

The callback is always invoked from the context (thread, process) that called uct_iface_progress().

It is allowed to call other communication routines from the callback.

Parameters

in arg User-defined argument

in data Points to the received unexpected data.

in length Length of data.

in flags Mask with uct_cb_param_flags flags. If it contains UCT_CB_PARAM_FLAG_DESC
value, this means data is part of a descriptor which must be released later using
uct_iface_release_desc by the user if the callback returns UCS_INPROGRESS.

in stag Tag from sender.

in imm Immediate data from sender.
in,out context Storage for a per-message user-defined context. In this context, the message is

defined by the sender side as a single call to uct_ep_tag_eager_short/bcopy/zcopy. On
the transport level the message can be fragmented and delivered to the target over
multiple fragments. The fragments will preserve the original order of the message.
Each fragment will result in invocation of the above callback. The user can use
UCT_CB_PARAM_FLAG_FIRST to identify the first fragment, allocate the context
object and use the context as a token that is set by the user and passed to subsequent
callbacks of the same message. The user is responsible for allocation and release of
the context.

Note

No need to allocate the context in the case of a single fragment message (i.e. flags contains
UCT_CB_PARAM_FLAG_FIRST, but does not contain UCT_CB_PARAM_FLAG_MORE).

Return values

UCS_OK - data descriptor was consumed, and can be released by the caller.

UCS_INPROGRESS - data descriptor is owned by the callee, and will be released later.

6.2.8.2.2 uct_tag_unexp_rndv_cb_t

typedef ucs_status_t(∗ uct_tag_unexp_rndv_cb_t) (void ∗arg, unsigned flags, uint64_t stag,

const void ∗header, unsigned header_length, uint64_t remote_addr, size_t length, const void

∗rkey_buf)

This callback is invoked when rendezvous send notification has arrived and no corresponding tag has been posted.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

210 Module Documentation

Note

The callback is always invoked from the context (thread, process) that called uct_iface_progress().

It is allowed to call other communication routines from the callback.

Parameters

in arg User-defined argument

in flags Mask with uct_cb_param_flags

in stag Tag from sender.

in header User defined header.
in header_length User defined header length in bytes.

in remote_addr Sender's buffer virtual address.
in length Sender's buffer length.

in rkey_buf Sender's buffer packed remote key. It can be passed to uct_rkey_unpack() to create
uct_rkey_t.

Warning

If the user became the owner of the desc (by returning UCS_INPROGRESS) the descriptor must be released
later by uct_iface_release_desc by the user.

Return values

UCS_OK - descriptor was consumed, and can be released by the caller.

UCS_INPROGRESS - descriptor is owned by the callee, and would be released later.

6.2.8.3 Function Documentation

6.2.8.3.1 uct_ep_tag_eager_short()

ucs_status_t uct_ep_tag_eager_short (

uct_ep_h ep,

uct_tag_t tag,

const void ∗ data,

size_t length)

This routine sends a message using short eager protocol. Eager protocol means that the whole data is sent to the
peer immediately without any preceding notification. The data is provided as buffer and its length,and must not be
larger than the corresponding max_short value in uct_iface_attr. The immediate value delivered to the receiver is
implicitly equal to 0. If it's required to pass nonzero imm value, uct_ep_tag_eager_bcopy should be used.

Parameters

in ep Destination endpoint handle.

in tag Tag to use for the eager message.

in data Data to send.
in length Data length.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 211

Returns

UCS_OK - operation completed successfully.

UCS_ERR_NO_RESOURCE - could not start the operation due to lack of send resources.

6.2.8.3.2 uct_ep_tag_eager_bcopy()

ssize_t uct_ep_tag_eager_bcopy (

uct_ep_h ep,

uct_tag_t tag,

uint64_t imm,

uct_pack_callback_t pack_cb,

void ∗ arg,

unsigned flags)

This routine sends a message using bcopy eager protocol. Eager protocol means that the whole data is sent to the
peer immediately without any preceding notification. Custom data callback is used to copy the data to the network
buffers.

Note

The resulted data length must not be larger than the corresponding max_bcopy value in uct_iface_attr.

Parameters

in ep Destination endpoint handle.

in tag Tag to use for the eager message.

in imm Immediate value which will be available to the receiver.
in pack_cb User callback to pack the data.

in arg Custom argument to pack_cb.

in flags Tag message flags, see uct_msg_flags.

Returns

>=0 - The size of the data packed by pack_cb.

otherwise - Error code.

6.2.8.3.3 uct_ep_tag_eager_zcopy()

ucs_status_t uct_ep_tag_eager_zcopy (

uct_ep_h ep,

uct_tag_t tag,

uint64_t imm,

const uct_iov_t ∗ iov,

size_t iovcnt,

unsigned flags,

uct_completion_t ∗ comp)

This routine sends a message using zcopy eager protocol. Eager protocol means that the whole data is sent to the
peer immediately without any preceding notification. The input data (which has to be previously registered) in iov
array of uct_iov_t structures sent to remote side (¨gather output¨). Buffers in iov are processed in array order, so the
function complete iov[0] before proceeding to iov[1], and so on.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

212 Module Documentation

Note

The resulted data length must not be larger than the corresponding max_zcopy value in uct_iface_attr.

Parameters

in ep Destination endpoint handle.

in tag Tag to use for the eager message.

in imm Immediate value which will be available to the receiver.
in iov Points to an array of uct_iov_t structures. A particular structure pointer must be a valid

address. A NULL terminated array is not required.

in iovcnt Size of the iov array. If iovcnt is zero, the data is considered empty. Note that iovcnt is limited
by the corresponding max_iov value in uct_iface_attr.

in flags Tag message flags, see uct_msg_flags.

in comp Completion callback which will be called when the data is reliably received by the peer, and the
buffer can be reused or invalidated.

Returns

UCS_OK - operation completed successfully.

UCS_ERR_NO_RESOURCE - could not start the operation due to lack of send resources.

UCS_INPROGRESS - operation started, and comp will be used to notify when it's completed.

6.2.8.3.4 uct_ep_tag_rndv_zcopy()

ucs_status_ptr_t uct_ep_tag_rndv_zcopy (

uct_ep_h ep,

uct_tag_t tag,

const void ∗ header,

unsigned header_length,

const uct_iov_t ∗ iov,

size_t iovcnt,

unsigned flags,

uct_completion_t ∗ comp)

This routine sends a message using rendezvous protocol. Rendezvous protocol means that only a small notification
is sent at first, and the data itself is transferred later (when there is a match) to avoid extra memory copy.

Note

The header will be available to the receiver in case of unexpected rendezvous operation only, i.e. the peer has
not posted tag for this message yet (by means of uct_iface_tag_recv_zcopy), when it is arrived.

Parameters

in ep Destination endpoint handle.

in tag Tag to use for the eager message.

in header User defined header.
in header_length User defined header length in bytes. Note that it is limited by the corresponding

max_hdr value in uct_iface_attr.
in iov Points to an array of uct_iov_t structures. A particular structure pointer must be valid

address. A NULL terminated array is not required.

in iovcnt Size of the iov array. If iovcnt is zero, the data is considered empty. Note that iovcnt is
limited by the corresponding max_iov value in uct_iface_attr.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 213

Parameters

in flags Tag message flags, see uct_msg_flags.

in comp Completion callback which will be called when the data is reliably received by the
peer, and the buffer can be reused or invalidated.

Returns

>=0 - The operation is in progress and the return value is a handle which can be used to cancel the outstand-
ing rendezvous operation.

otherwise - Error code.

6.2.8.3.5 uct_ep_tag_rndv_cancel()

ucs_status_t uct_ep_tag_rndv_cancel (

uct_ep_h ep,

void ∗ op)

This routine signals the underlying transport disregard the outstanding operation without calling completion callback
provided in uct_ep_tag_rndv_zcopy.

Note

The operation handle should be valid at the time the routine is invoked. I.e. it should be a handle of the real
operation which is not completed yet.

Parameters

in ep Destination endpoint handle.

in op Rendezvous operation handle, as returned from uct_ep_tag_rndv_zcopy.

Returns

UCS_OK - The operation has been canceled.

6.2.8.3.6 uct_ep_tag_rndv_request()

ucs_status_t uct_ep_tag_rndv_request (

uct_ep_h ep,

uct_tag_t tag,

const void ∗ header,

unsigned header_length,

unsigned flags)

This routine sends a rendezvous request only, which indicates that the data transfer should be completed in soft-
ware.

Parameters

in ep Destination endpoint handle.

in tag Tag to use for matching.

in header User defined header
in header_length User defined header length in bytes. Note that it is limited by the corresponding

max_hdr value in uct_iface_attr.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

214 Module Documentation

Parameters

in flags Tag message flags, see uct_msg_flags.

Returns

UCS_OK - operation completed successfully.

UCS_ERR_NO_RESOURCE - could not start the operation due to lack of send resources.

6.2.8.3.7 uct_iface_tag_recv_zcopy()

ucs_status_t uct_iface_tag_recv_zcopy (

uct_iface_h iface,

uct_tag_t tag,

uct_tag_t tag_mask,

const uct_iov_t ∗ iov,

size_t iovcnt,

uct_tag_context_t ∗ ctx)

This routine posts a tag to be matched on a transport interface. When a message with the corresponding tag
arrives it is stored in the user buffer (described by iov and iovcnt) directly. The operation completion is reported
using callbacks on the ctx structure.

Parameters

in iface Interface to post the tag on.

in tag Tag to expect.

in tag_mask Mask which specifies what bits of the tag to compare.

in iov Points to an array of uct_iov_t structures. The iov pointer must be a valid address of
an array of uct_iov_t structures. A particular structure pointer must be a valid
address. A NULL terminated array is not required.

in iovcnt Size of the iov data uct_iov_t structures array. If iovcnt is zero, the data is considered
empty. iovcnt is limited by uct_iface_attr::cap::tag::max_iov.

in,out ctx Context associated with this particular tag, ¨priv¨ field in this structure is used to track
the state internally.

Returns

UCS_OK - The tag is posted to the transport.

UCS_ERR_NO_RESOURCE - Could not start the operation due to lack of resources.

UCS_ERR_EXCEEDS_LIMIT - No more room for tags in the transport.

6.2.8.3.8 uct_iface_tag_recv_cancel()

ucs_status_t uct_iface_tag_recv_cancel (

uct_iface_h iface,

uct_tag_context_t ∗ ctx,

int force)

This routine cancels a tag, which was previously posted by uct_iface_tag_recv_zcopy. The tag would be either
matched or canceled, in a bounded time, regardless of the peer actions. The original completion callback of the tag
would be called with the status if force is not set.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 215

Parameters

in iface Interface to cancel the tag on.

in ctx Tag context which was used for posting the tag. If force is 0, ctx->completed_cb will be called
with either UCS_OK which means the tag was matched and data received despite the cancel
request, or UCS_ERR_CANCELED which means the tag was successfully canceled before it
was matched.

in force Whether to report completions to ctx->completed_cb. If nonzero, the cancel is assumed to be
successful, and the callback is not called.

Returns

UCS_OK - The tag is canceled in the transport.

6.2.9 UCT client-server operations

Data Structures

• struct uct_ep_connect_params

Parameters for connecting a UCT endpoint by uct_ep_connect. More...

• struct uct_cm_attr

Connection manager attributes, capabilities and limitations. More...

• struct uct_listener_attr

UCT listener attributes, capabilities and limitations. More...

• struct uct_listener_params

Parameters for creating a listener object uct_listener_h by uct_listener_create. More...

• struct uct_cm_ep_priv_data_pack_args

Arguments to the client-server private data pack callback. More...

• struct uct_cm_ep_resolve_args

Arguments to the client-server resolved callback. More...

• struct uct_cm_remote_data

Data received from the remote peer. More...

• struct uct_cm_listener_conn_request_args

Arguments to the listener's connection request callback. More...

• struct uct_cm_ep_client_connect_args

Arguments to the client's connect callback. More...

• struct uct_cm_ep_server_conn_notify_args

Arguments to the server's notify callback. More...

Typedefs

• typedef struct uct_cm_ep_priv_data_pack_args uct_cm_ep_priv_data_pack_args_t

Arguments to the client-server private data pack callback.

• typedef struct uct_cm_ep_resolve_args uct_cm_ep_resolve_args_t

Arguments to the client-server resolved callback.

• typedef struct uct_cm_remote_data uct_cm_remote_data_t

Data received from the remote peer.

• typedef struct uct_cm_listener_conn_request_args uct_cm_listener_conn_request_args_t

Arguments to the listener's connection request callback.

• typedef struct uct_cm_ep_client_connect_args uct_cm_ep_client_connect_args_t

Arguments to the client's connect callback.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

216 Module Documentation

• typedef struct uct_cm_ep_server_conn_notify_args uct_cm_ep_server_conn_notify_args_t

Arguments to the server's notify callback.

• typedef void(∗ uct_sockaddr_conn_request_callback_t) (uct_iface_h iface, void ∗arg, uct_conn_request_h
conn_request, const void ∗conn_priv_data, size_t length)

Callback to process an incoming connection request on the server side.

• typedef void(∗ uct_cm_listener_conn_request_callback_t) (uct_listener_h listener, void ∗arg, const
uct_cm_listener_conn_request_args_t ∗conn_req_args)

Callback to process an incoming connection request on the server side listener in a connection manager.

• typedef void(∗ uct_cm_ep_server_conn_notify_callback_t) (uct_ep_h ep, void ∗arg, const uct_cm_ep_server_conn_notify_args_t
∗connect_args)

Callback to process an incoming connection establishment acknowledgment on the server side listener, from the
client, which indicates that the client side is connected. The callback also notifies the server side of a local error on a
not-yet-connected endpoint.

• typedef void(∗ uct_cm_ep_client_connect_callback_t) (uct_ep_h ep, void ∗arg, const uct_cm_ep_client_connect_args_t
∗connect_args)

Callback to process an incoming connection response on the client side from the server or handle a local error on a
not-yet-connected endpoint.

• typedef void(∗ uct_ep_disconnect_cb_t) (uct_ep_h ep, void ∗arg)

Callback to handle the disconnection of the remote peer.

• typedef ssize_t(∗ uct_cm_ep_priv_data_pack_callback_t) (void ∗arg, const uct_cm_ep_priv_data_pack_args_t
∗pack_args, void ∗priv_data)

Callback to fill the user's private data in a client-server flow.

• typedef ucs_status_t(∗ uct_cm_ep_resolve_callback_t) (void ∗user_data, const uct_cm_ep_resolve_args_t
∗resolve_args)

Callback to notify that the client side endpoint is bound to a local device.

Enumerations

• enum uct_cm_attr_field { UCT_CM_ATTR_FIELD_MAX_CONN_PRIV = UCS_BIT(0) }

UCT connection manager attributes field mask.

• enum uct_listener_attr_field { UCT_LISTENER_ATTR_FIELD_SOCKADDR = UCS_BIT(0) }

UCT listener attributes field mask.

• enum uct_listener_params_field { UCT_LISTENER_PARAM_FIELD_BACKLOG = UCS_BIT(0) , UCT_LISTENER_PARAM_FIELD_CONN_REQUEST_CB
= UCS_BIT(1) , UCT_LISTENER_PARAM_FIELD_USER_DATA = UCS_BIT(2) }

UCT listener created by uct_listener_create parameters field mask.

• enum uct_ep_connect_params_field { UCT_EP_CONNECT_PARAM_FIELD_PRIVATE_DATA = UCS_BIT(0)
, UCT_EP_CONNECT_PARAM_FIELD_PRIVATE_DATA_LENGTH = UCS_BIT(1) }

UCT endpoint connected by uct_ep_connect parameters field mask.

• enum uct_cm_ep_priv_data_pack_args_field { UCT_CM_EP_PRIV_DATA_PACK_ARGS_FIELD_DEVICE_NAME
= UCS_BIT(0) }

Client-Server private data pack callback arguments field mask.

• enum uct_cm_ep_resolve_args_field { UCT_CM_EP_RESOLVE_ARGS_FIELD_DEV_NAME = UCS_BIT(0)
, UCT_CM_EP_RESOLVE_ARGS_FIELD_STATUS = UCS_BIT(1) }

Client-Server resolve callback arguments field mask.

• enum uct_cm_remote_data_field { UCT_CM_REMOTE_DATA_FIELD_DEV_ADDR = UCS_BIT(0) ,
UCT_CM_REMOTE_DATA_FIELD_DEV_ADDR_LENGTH = UCS_BIT(1) , UCT_CM_REMOTE_DATA_FIELD_CONN_PRIV_DATA
= UCS_BIT(2) , UCT_CM_REMOTE_DATA_FIELD_CONN_PRIV_DATA_LENGTH = UCS_BIT(3) }

Remote data attributes field mask.

• enum uct_cm_listener_conn_request_args_field { UCT_CM_LISTENER_CONN_REQUEST_ARGS_FIELD_DEV_NAME
= UCS_BIT(0) , UCT_CM_LISTENER_CONN_REQUEST_ARGS_FIELD_CONN_REQUEST = UCS←↩

_BIT(1) , UCT_CM_LISTENER_CONN_REQUEST_ARGS_FIELD_REMOTE_DATA = UCS_BIT(2) ,
UCT_CM_LISTENER_CONN_REQUEST_ARGS_FIELD_CLIENT_ADDR = UCS_BIT(3) }

Listener's connection request callback arguments field mask.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 217

• enum uct_cm_ep_client_connect_args_field { UCT_CM_EP_CLIENT_CONNECT_ARGS_FIELD_REMOTE_DATA
= UCS_BIT(0) , UCT_CM_EP_CLIENT_CONNECT_ARGS_FIELD_STATUS = UCS_BIT(1) }

Field mask flags for client-side connection established callback.

• enum uct_cm_ep_server_conn_notify_args_field { UCT_CM_EP_SERVER_CONN_NOTIFY_ARGS_FIELD_STATUS
= UCS_BIT(0) }

Field mask flags for server-side connection established notification callback.

Functions

• ucs_status_t uct_iface_accept (uct_iface_h iface, uct_conn_request_h conn_request)

Accept connection request.

• ucs_status_t uct_iface_reject (uct_iface_h iface, uct_conn_request_h conn_request)

Reject connection request. Will invoke an error handler uct_error_handler_t on the remote transport interface, if set.

• ucs_status_t uct_ep_connect (uct_ep_h ep, const uct_ep_connect_params_t ∗params)

Connect a client side endpoint after it is bound to a local network device, i.e. uct_ep_params_t::cm_resolve_cb was
invoked.

• ucs_status_t uct_ep_disconnect (uct_ep_h ep, unsigned flags)

Initiate a disconnection of an endpoint connected to a sockaddr by a connection manager uct_cm_h.

• ucs_status_t uct_cm_open (uct_component_h component, uct_worker_h worker, const uct_cm_config_t
∗config, uct_cm_h ∗cm_p)

Open a connection manager.

• void uct_cm_close (uct_cm_h cm)

Close a connection manager.

• ucs_status_t uct_cm_query (uct_cm_h cm, uct_cm_attr_t ∗cm_attr)

Get connection manager attributes.

• ucs_status_t uct_cm_config_read (uct_component_h component, const char ∗env_prefix, const char
∗filename, uct_cm_config_t ∗∗config_p)

Read the configuration for a connection manager.

• ucs_status_t uct_cm_client_ep_conn_notify (uct_ep_h ep)

Notify the server about client-side connection establishment.

• ucs_status_t uct_listener_create (uct_cm_h cm, const struct sockaddr ∗saddr, socklen_t socklen, const
uct_listener_params_t ∗params, uct_listener_h ∗listener_p)

Create a new transport listener object.

• void uct_listener_destroy (uct_listener_h listener)

Destroy a transport listener.

• ucs_status_t uct_listener_reject (uct_listener_h listener, uct_conn_request_h conn_request)

Reject a connection request.

• ucs_status_t uct_listener_query (uct_listener_h listener, uct_listener_attr_t ∗listener_attr)

Get attributes specific to a particular listener.

6.2.9.1 Detailed Description

Defines client-server operations. The client-server API allows the connection establishment between an active side
- a client, and its peer - the passive side - a server. The connection can be established through a UCT transport
that supports listening and connecting via IP address and port (listening can also be on INADDR_ANY).

The following is a general overview of the operations on the server side:

Connecting: uct_cm_open Open a connection manager. uct_listener_create Create a listener on the CM and start
listening on a given IP,port / INADDR_ANY. uct_cm_listener_conn_request_callback_t This callback is invoked by
the UCT transport to handle an incoming connection request from a client. Accept or reject the client's connection
request. uct_ep_create Connect to the client by creating an endpoint if the request is accepted. The server creates a
new endpoint for every connection request that it accepts. uct_cm_ep_server_conn_notify_callback_t This callback
is invoked by the UCT transport to handle the connection notification from the client.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

218 Module Documentation

Note

The private data which the server should send to the client can be either provided directly to uct_ep_create,
or filled by uct_cm_ep_priv_data_pack_callback_t provided to uct_ep_create.

In order to reject a connection request, can either call uct_listener_reject or return failure status as defined by
ucs_status_t from uct_cm_ep_priv_data_pack_callback_t.

Disconnecting: uct_ep_disconnect Disconnect the server's endpoint from the client. Can be called when initiating a
disconnect or when receiving a disconnect notification from the remote side. uct_ep_disconnect_cb_t This callback
is invoked by the UCT transport when the client side calls uct_ep_disconnect as well. uct_ep_destroy Destroy
the endpoint connected to the remote peer. If this function is called before the endpoint was disconnected, the
uct_ep_disconnect_cb_t will not be invoked.

Destroying the server's resources: uct_listener_destroy Destroy the listener object. uct_cm_close Close the con-
nection manager.

The following is a general overview of the operations on the client side:

Connecting: uct_cm_open Open a connection manager. uct_ep_create Create an endpoint for establishing a con-
nection to the server. uct_cm_ep_resolve_callback_t This callback is invoked on the client side of the connec-
tion manager, after the remote server address was resolved to the local device to be used for connection es-
tablishment. uct_ep_connect This function should be called on the client side, in order to send private data and
resume connection establishment, following an address-resolved notification via uct_cm_ep_resolve_callback_t.
uct_cm_ep_client_connect_callback_t This callback is invoked by the UCT transport to handle a connection re-
sponse from the server. After invoking this callback, the UCT transport will finalize the client's connection to the
server. uct_cm_client_ep_conn_notify After the client's connection establishment is completed, the client should
call this function in which it sends a notification message to the server stating that it (the client) is connected. The
notification message that is sent depends on the transport's implementation.

Disconnecting: uct_ep_disconnect Disconnect the client's endpoint from the server. Can be called when initiating a
disconnect or when receiving a disconnect notification from the remote side. uct_ep_disconnect_cb_t This callback
is invoked by the UCT transport when the server side calls uct_ep_disconnect as well. uct_ep_destroy Destroy the
endpoint connected to the remote peer.

Destroying the client's resources: uct_cm_close Close the connection manager.

6.2.9.2 Data Structure Documentation

6.2.9.2.1 struct uct_ep_connect_params

Data Fields

uint64_t field_mask Mask of valid fields in this structure, using bits from
uct_ep_connect_params_field. Fields not specified by this mask will be
ignored.

const void ∗ private_data User's private data to be passed from client to server.

size_t private_data_length Length of uct_ep_connect_params::private_data, the maximal allowed
value is indicated by the uct_cm_attr::max_conn_priv.

6.2.9.2.2 struct uct_cm_attr

Data Fields

uint64_t field_mask Mask of valid fields in this structure, using bits from uct_cm_attr_field. Fields not
specified by this mask will be ignored.

size_t max_conn_priv Max size of the connection manager's private data used for connection
establishment with sockaddr.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 219

6.2.9.2.3 struct uct_listener_attr

Data Fields

uint64_t field_mask Mask of valid fields in this structure, using bits from
uct_listener_attr_field. Fields not specified by this mask will be
ignored.

struct sockaddr_storage sockaddr Sockaddr on which this listener is listening.

6.2.9.2.4 struct uct_listener_params

Data Fields

uint64_t field_mask Mask of valid fields in this structure, using
bits from uct_listener_params_field. Fields
not specified by this mask will be ignored.

int backlog Backlog of incoming connection requests. If
specified, must be a positive value. If not
specified, each CM component will use its
maximal allowed value, based on the
system's setting.

uct_cm_listener_conn_request_callback_t conn_request_cb Callback function for handling incoming
connection requests.

void ∗ user_data User data associated with the listener.

6.2.9.2.5 struct uct_cm_ep_priv_data_pack_args

Used with the client-server API on a connection manager.

Data Fields

uint64_t field_mask Mask of valid fields in this structure, using bits from
uct_cm_ep_priv_data_pack_args_field. Fields not
specified by this mask should not be accessed by the
callback.

char dev_name[UCT_DEVICE_NAME_MAX] Device name. This routine may fill the user's private
data according to the given device name. The device
name that is passed to this routine, corresponds to
uct_tl_resource_desc_t::dev_name as returned from
uct_md_query_tl_resources.

6.2.9.2.6 struct uct_cm_ep_resolve_args

Used with the client-server API on a connection manager.

Data Fields

uint64_t field_mask Mask of valid fields in this structure, using bits from
uct_cm_ep_resolve_args_field. Fields not specified
by this mask should not be accessed by the
callback.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

220 Module Documentation

Data Fields

char dev_name[UCT_DEVICE_NAME_MAX] Device name indicates the device that the endpoint
was bound to during address and route resolution.
The device name that is passed to this callback
corresponds to uct_tl_resource_desc_t::dev_name
as returned from uct_md_query_tl_resources.

ucs_status_t status Indicates address resolution status: UCS_OK -
address of the remote server was resolved
successfully. UCS_ERR_UNREACHABLE - the
remote server is unreachable. Otherwise - indicates
an internal connection establishment error on the
local (client) side.

6.2.9.2.7 struct uct_cm_remote_data

The remote peer's device address, the data received from it and their lengths. Used with the client-server API on a
connection manager.

Data Fields

uint64_t field_mask Mask of valid fields in this structure, using bits from
uct_cm_remote_data_field. Fields not specified by this
mask will be ignored.

const uct_device_addr_t ∗ dev_addr Device address of the remote peer.

size_t dev_addr_length Length of the remote device address.

const void ∗ conn_priv_data Pointer to the received data. This is the private data
that was passed to
uct_ep_params_t::sockaddr_pack_cb.

size_t conn_priv_data_length Length of the received data from the peer.

6.2.9.2.8 struct uct_cm_listener_conn_request_args

The local device name, connection request handle and the data the client sent. Used with the client-server API on
a connection manager.

Data Fields

uint64_t field_mask Mask of valid fields in this
structure, using bits from
uct_cm_listener_conn_request_args_field.
Fields not specified by this mask
should not be accessed by the
callback.

char dev_name[UCT_DEVICE_NAME_MAX]Local device name which handles
the incoming connection request.

uct_conn_request_h conn_request Connection request handle. Can
be passed to this callback from the
transport and will be used by it to
accept or reject the connection
request from the client.

const uct_cm_remote_data_t ∗ remote_data Remote data from the client.
ucs_sock_addr_t client_address Client's address.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 221

6.2.9.2.9 struct uct_cm_ep_client_connect_args

Used with the client-server API on a connection manager.

Data Fields

uint64_t field_mask Mask of valid fields in this structure, using bits from
uct_cm_ep_client_connect_args_field. Fields not specified
by this mask should not be accessed by the callback.

const uct_cm_remote_data_t ∗ remote_data Remote data from the server.
ucs_status_t status Indicates the connection establishment response from the

remote server: UCS_OK - the remote server accepted the
connection request. UCS_ERR_REJECTED - the remote
server rejected the connection request.
UCS_ERR_CONNECTION_RESET - the server's
connection was reset during the connection establishment to
the client. Otherwise - indicates an internal connection
establishment error on the local (client) side.

6.2.9.2.10 struct uct_cm_ep_server_conn_notify_args

Used with the client-server API on a connection manager.

Data Fields

uint64_t field_mask Mask of valid fields in this structure, using bits from
uct_cm_ep_server_conn_notify_args_field. Fields not specified by this mask
should not be accessed by the callback.

ucs_status_t status Indicates the client's ucs_status_t status: UCS_OK - the client completed its
connection establishment and called uct_cm_client_ep_conn_notify
UCS_ERR_CONNECTION_RESET - the client's connection was reset during
the connection establishment to the server. Otherwise - indicates an internal
connection establishment error on the local (server) side.

6.2.9.3 Typedef Documentation

6.2.9.3.1 uct_cm_ep_priv_data_pack_args_t

typedef struct uct_cm_ep_priv_data_pack_args uct_cm_ep_priv_data_pack_args_t

Used with the client-server API on a connection manager.

6.2.9.3.2 uct_cm_ep_resolve_args_t

typedef struct uct_cm_ep_resolve_args uct_cm_ep_resolve_args_t

Used with the client-server API on a connection manager.

6.2.9.3.3 uct_cm_remote_data_t

typedef struct uct_cm_remote_data uct_cm_remote_data_t

The remote peer's device address, the data received from it and their lengths. Used with the client-server API on a
connection manager.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

222 Module Documentation

6.2.9.3.4 uct_cm_listener_conn_request_args_t

typedef struct uct_cm_listener_conn_request_args uct_cm_listener_conn_request_args_t

The local device name, connection request handle and the data the client sent. Used with the client-server API on
a connection manager.

6.2.9.3.5 uct_cm_ep_client_connect_args_t

typedef struct uct_cm_ep_client_connect_args uct_cm_ep_client_connect_args_t

Used with the client-server API on a connection manager.

6.2.9.3.6 uct_cm_ep_server_conn_notify_args_t

typedef struct uct_cm_ep_server_conn_notify_args uct_cm_ep_server_conn_notify_args_t

Used with the client-server API on a connection manager.

6.2.9.3.7 uct_sockaddr_conn_request_callback_t

typedef void(∗ uct_sockaddr_conn_request_callback_t) (uct_iface_h iface, void ∗arg, uct_conn_request_h

conn_request, const void ∗conn_priv_data, size_t length)

This callback routine will be invoked on the server side upon receiving an incoming connection request. It should
be set by the server side while initializing an interface. Incoming data is placed inside the conn_priv_data buffer.
This callback has to be thread safe. Other than communication progress routines, it is allowed to call other UCT
communication routines from this callback.

Parameters

in iface Transport interface.

in arg User defined argument for this callback.

in conn_request Transport level connection request. The user should accept or reject the request by
calling uct_iface_accept or uct_iface_reject routines respectively. conn_request
should not be used outside the scope of this callback.

in conn_priv_data Points to the received data. This is the private data that was passed to the
uct_ep_params_t::sockaddr_pack_cb on the client side.

in length Length of the received data.

6.2.9.3.8 uct_cm_listener_conn_request_callback_t

typedef void(∗ uct_cm_listener_conn_request_callback_t) (uct_listener_h listener, void ∗arg,
const uct_cm_listener_conn_request_args_t ∗conn_req_args)

This callback routine will be invoked on the server side upon receiving an incoming connection request. It should be
set by the server side while initializing a listener in a connection manager. This callback has to be thread safe. Other
than communication progress routines, it is allowed to call other UCT communication routines from this callback.

Parameters

in listener Transport listener.

in arg User argument for this callback as defined in uct_listener_params_t::user_data

in conn_req_args Listener's arguments to handle the connection request from the client.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 223

6.2.9.3.9 uct_cm_ep_server_conn_notify_callback_t

typedef void(∗ uct_cm_ep_server_conn_notify_callback_t) (uct_ep_h ep, void ∗arg, const uct_cm_ep_server_conn_notify_args_t

∗connect_args)

This callback routine will be invoked on the server side upon receiving an incoming connection establishment ac-
knowledgment from the client, which is sent from it once the client is connected to the server. Used to connect the
server side to the client or handle an error from it - depending on the status field. This callback will also be invoked in
the event of an internal local error with a failed uct_cm_ep_server_conn_notify_args::status if the endpoint was not
connected yet. This callback has to be thread safe. Other than communication progress routines, it is permissible
to call other UCT communication routines from this callback.

Parameters

in ep Transport endpoint.

in arg User argument for this callback as defined in uct_ep_params_t::user_data

in connect_args Server's connect callback arguments.

6.2.9.3.10 uct_cm_ep_client_connect_callback_t

typedef void(∗ uct_cm_ep_client_connect_callback_t) (uct_ep_h ep, void ∗arg, const uct_cm_ep_client_connect_args_t

∗connect_args)

This callback routine will be invoked on the client side upon receiving an incoming connection response
from the server. Used to connect the client side to the server or handle an error from it - depending
on the status field. This callback will also be invoked in the event of an internal local error with a failed
uct_cm_ep_client_connect_args::status if the endpoint was not connected yet. This callback has to be thread
safe. Other than communication progress routines, it is permissible to call other UCT communication routines from
this callback.

Parameters

in ep Transport endpoint.

in arg User argument for this callback as defined in uct_ep_params_t::user_data.

in connect_args Client's connect callback arguments

6.2.9.3.11 uct_ep_disconnect_cb_t

typedef void(∗ uct_ep_disconnect_cb_t) (uct_ep_h ep, void ∗arg)

This callback routine will be invoked on the client and server sides upon a disconnect of the remote peer. It will
disconnect the given endpoint from the remote peer. This callback won't be invoked if the endpoint was not con-
nected to the remote peer yet. This callback has to be thread safe. Other than communication progress routines, it
is permissible to call other UCT communication routines from this callback.

Parameters

in ep Transport endpoint to disconnect.

in arg User argument for this callback as defined in uct_ep_params_t::user_data.

6.2.9.3.12 uct_cm_ep_priv_data_pack_callback_t

typedef ssize_t(∗ uct_cm_ep_priv_data_pack_callback_t) (void ∗arg, const uct_cm_ep_priv_data_pack_args_t

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

224 Module Documentation

∗pack_args, void ∗priv_data)

This callback routine will be invoked on the client side, before sending the transport's connection request to the
server, or on the server side before sending a connection response to the client. This callback routine can be
set when creating an endpoint. The user's private data should be placed inside the priv_data buffer to be sent
to the remote side. The maximal allowed length of the private data is indicated by the field max_conn_priv inside
uct_iface_attr or inside uct_cm_attr when using a connection manager. Communication progress routines should
not be called from this callback. It is allowed to call other UCT communication routines from this callback.

Parameters

in arg User defined argument for this callback.

in pack_args Handle for the the private data packing.

out priv_data User's private data to be passed to the remote side.

Returns

Negative value indicates an error according to ucs_status_t. On success, a non-negative value indicates
actual number of bytes written to the priv_data buffer.

6.2.9.3.13 uct_cm_ep_resolve_callback_t

typedef ucs_status_t(∗ uct_cm_ep_resolve_callback_t) (void ∗user_data, const uct_cm_ep_resolve_args_t

∗resolve_args)

This callback routine will be invoked, when the client side endpoint is bound to a local device. The callback routine
can be set when creating an endpoint. Communication progress routines should not be called from this callback. It
is allowed to call other UCT communication routines from this callback.

Parameters

in user_data User argument as defined in uct_ep_params_t::user_data.

in resolve_args Handle for the extra arguments provided by the transport.

Returns

UCS_OK on success or error as defined in ucs_status_t.

6.2.9.4 Enumeration Type Documentation

6.2.9.4.1 uct_cm_attr_field

enum uct_cm_attr_field

The enumeration allows specifying which fields in uct_cm_attr_t are present, for backward compatibility support.

Enumerator

UCT_CM_ATTR_FIELD_MAX_CONN_PRIV Enables uct_cm_attr::max_conn_priv

6.2.9.4.2 uct_listener_attr_field

enum uct_listener_attr_field

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 225

The enumeration allows specifying which fields in uct_listener_attr_t are present, for backward compatibility support.

Enumerator

UCT_LISTENER_ATTR_FIELD_SOCKADDR Enables uct_listener_attr::sockaddr

6.2.9.4.3 uct_listener_params_field

enum uct_listener_params_field

The enumeration allows specifying which fields in uct_listener_params_t are present, for backward compatibility
support.

Enumerator

UCT_LISTENER_PARAM_FIELD_BACKLOG Enables uct_listener_params::backlog

UCT_LISTENER_PARAM_FIELD_CONN_REQUEST_CB Enables uct_listener_params::conn_request_cb

UCT_LISTENER_PARAM_FIELD_USER_DATA Enables uct_listener_params::user_data

6.2.9.4.4 uct_ep_connect_params_field

enum uct_ep_connect_params_field

The enumeration allows specifying which fields in uct_ep_connect_params_t are present, for backward compatibility
support.

Enumerator

UCT_EP_CONNECT_PARAM_FIELD_PRIVATE_←↩

DATA
Enables uct_ep_connect_params::private_data

UCT_EP_CONNECT_PARAM_FIELD_PRIVATE_←↩

DATA_LENGTH
Enables
uct_ep_connect_params::private_data_length

6.2.9.4.5 uct_cm_ep_priv_data_pack_args_field

enum uct_cm_ep_priv_data_pack_args_field

The enumeration allows specifying which fields in uct_cm_ep_priv_data_pack_args are present, for backward com-
patibility support.

Enumerator

UCT_CM_EP_PRIV_DATA_PACK_ARGS_FIELD_←↩

DEVICE_NAME
Enables uct_cm_ep_priv_data_pack_args::dev_name
Indicates that dev_name field in
uct_cm_ep_priv_data_pack_args_t is valid.

6.2.9.4.6 uct_cm_ep_resolve_args_field

enum uct_cm_ep_resolve_args_field

The enumeration allows specifying which fields in uct_cm_ep_resolve_args are present, for backward compatibility
support.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

226 Module Documentation

Enumerator

UCT_CM_EP_RESOLVE_ARGS_FIELD_DEV_←↩

NAME
Indicates that uct_cm_ep_resolve_args::dev_name is
valid.

UCT_CM_EP_RESOLVE_ARGS_FIELD_STATUS Indicates that uct_cm_ep_resolve_args::status is
valid.

6.2.9.4.7 uct_cm_remote_data_field

enum uct_cm_remote_data_field

The enumeration allows specifying which fields in uct_cm_remote_data are present, for backward compatibility
support.

Enumerator

UCT_CM_REMOTE_DATA_FIELD_DEV_ADDR Enables uct_cm_remote_data::dev_addr
UCT_CM_REMOTE_DATA_FIELD_DEV_ADDR_←↩

LENGTH
Enables uct_cm_remote_data::dev_addr_length

UCT_CM_REMOTE_DATA_FIELD_CONN_PRIV_←↩

DATA
Enables uct_cm_remote_data::conn_priv_data

UCT_CM_REMOTE_DATA_FIELD_CONN_PRIV_←↩

DATA_LENGTH
Enables
uct_cm_remote_data::conn_priv_data_length

6.2.9.4.8 uct_cm_listener_conn_request_args_field

enum uct_cm_listener_conn_request_args_field

The enumeration allows specifying which fields in uct_cm_listener_conn_request_args are present, for backward
compatibility support.

Enumerator

UCT_CM_LISTENER_CONN_REQUEST_ARGS_←↩

FIELD_DEV_NAME
Enables
uct_cm_listener_conn_request_args::dev_name
Indicates that dev_name field in
uct_cm_listener_conn_request_args_t is valid.

UCT_CM_LISTENER_CONN_REQUEST_ARGS_←↩

FIELD_CONN_REQUEST
Enables
uct_cm_listener_conn_request_args::conn_request
Indicates that conn_request field in
uct_cm_listener_conn_request_args_t is valid.

UCT_CM_LISTENER_CONN_REQUEST_ARGS_←↩

FIELD_REMOTE_DATA
Enables
uct_cm_listener_conn_request_args::remote_data
Indicates that remote_data field in
uct_cm_listener_conn_request_args_t is valid.

UCT_CM_LISTENER_CONN_REQUEST_ARGS_←↩

FIELD_CLIENT_ADDR
Enables
uct_cm_listener_conn_request_args::client_address
Indicates that client_address field in
uct_cm_listener_conn_request_args_t is valid.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 227

6.2.9.4.9 uct_cm_ep_client_connect_args_field

enum uct_cm_ep_client_connect_args_field

The enumeration allows specifying which fields in uct_cm_ep_client_connect_args are present, for backward com-
patibility support.

Enumerator

UCT_CM_EP_CLIENT_CONNECT_ARGS_FIELD←↩

_REMOTE_DATA
Enables
uct_cm_ep_client_connect_args::remote_data

UCT_CM_EP_CLIENT_CONNECT_ARGS_FIELD←↩

_STATUS
Enables uct_cm_ep_client_connect_args::status

6.2.9.4.10 uct_cm_ep_server_conn_notify_args_field

enum uct_cm_ep_server_conn_notify_args_field

The enumeration allows specifying which fields in uct_cm_ep_server_conn_notify_args are present, for backward
compatibility support.

Enumerator

UCT_CM_EP_SERVER_CONN_NOTIFY_ARGS_←↩

FIELD_STATUS
Enables uct_cm_ep_server_conn_notify_args::status
Indicates that status field in
uct_cm_ep_server_conn_notify_args_t is valid.

6.2.9.5 Function Documentation

6.2.9.5.1 uct_iface_accept()

ucs_status_t uct_iface_accept (

uct_iface_h iface,

uct_conn_request_h conn_request)

Parameters

in iface Transport interface which generated connection request conn_request.

in conn_request Connection establishment request passed as parameter of
uct_sockaddr_conn_request_callback_t.

Returns

Error code as defined by ucs_status_t

6.2.9.5.2 uct_iface_reject()

ucs_status_t uct_iface_reject (

uct_iface_h iface,

uct_conn_request_h conn_request)

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

228 Module Documentation

Parameters

in iface Interface which generated connection establishment request conn_request.

in conn_request Connection establishment request passed as parameter of
uct_sockaddr_conn_request_callback_t.

Returns

Error code as defined by ucs_status_t

6.2.9.5.3 uct_ep_connect()

ucs_status_t uct_ep_connect (

uct_ep_h ep,

const uct_ep_connect_params_t ∗ params)

This non-blocking routine establishes connection of the client side endpoint and sends private data to the peer.

Parameters

in ep Endpoint to connect.

in params Parameters as defined in uct_ep_connect_params_t.

Returns

UCS_OK Operation has been initiated successfully. Other error codes as defined by ucs_status_t.

6.2.9.5.4 uct_ep_disconnect()

ucs_status_t uct_ep_disconnect (

uct_ep_h ep,

unsigned flags)

This non-blocking routine will send a disconnect notification on the endpoint, so that uct_ep_disconnect_cb_t will
be called on the remote peer. The remote side should also call this routine when handling the initiator's dis-
connect. After a call to this function, the given endpoint may not be used for communications anymore. The
uct_ep_flush / uct_iface_flush routines will guarantee that the disconnect notification is delivered to the remote peer.
uct_ep_destroy should be called on this endpoint after invoking this routine and uct_ep_params::disconnect_cb was
called.

Parameters

in ep Endpoint to disconnect.

in flags Reserved for future use.

Returns

UCS_OK Operation has completed successfully. UCS_ERR_BUSY The ep is not connected yet (ei-
ther uct_cm_ep_client_connect_callback_t or uct_cm_ep_server_conn_notify_callback_t was not invoked).
UCS_INPROGRESS The disconnect request has been initiated, but the remote peer has not yet responded
to this request, and consequently the registered callback uct_ep_disconnect_cb_t has not been invoked to
handle the request. UCS_ERR_NOT_CONNECTED The ep is disconnected locally and remotely. Other error
codes as defined by ucs_status_t .

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 229

6.2.9.5.5 uct_cm_open()

ucs_status_t uct_cm_open (

uct_component_h component,

uct_worker_h worker,

const uct_cm_config_t ∗ config,

uct_cm_h ∗ cm_p)

Open a connection manager. All client server connection establishment operations are performed in the context of
a specific connection manager.

Note

This is an alternative API for uct_iface_open_mode::UCT_IFACE_OPEN_MODE_SOCKADDR_SERVER and
uct_iface_open_mode::UCT_IFACE_OPEN_MODE_SOCKADDR_CLIENT .

Parameters

in component Component on which to open the connection manager, as returned from
uct_query_components.

in worker Worker on which to open the connection manager.

in config CM configuration options. Either obtained from uct_cm_config_read() function, or
pointer to CM-specific structure that extends uct_cm_config_t.

out cm_p Filled with a handle to the connection manager.

Returns

Error code.

6.2.9.5.6 uct_cm_close()

void uct_cm_close (

uct_cm_h cm)

Parameters

in cm Connection manager to close.

6.2.9.5.7 uct_cm_query()

ucs_status_t uct_cm_query (

uct_cm_h cm,

uct_cm_attr_t ∗ cm_attr)

This routine queries the cm for its attributes uct_cm_attr_t.

Parameters

in cm Connection manager to query.

out cm_attr Filled with connection manager attributes.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

230 Module Documentation

6.2.9.5.8 uct_cm_config_read()

ucs_status_t uct_cm_config_read (

uct_component_h component,

const char ∗ env_prefix,

const char ∗ filename,

uct_cm_config_t ∗∗ config_p)

Parameters

in component Read the configuration of the connection manager on this component.

in env_prefix If non-NULL, search for environment variables starting with this UCT_<prefix>_.
Otherwise, search for environment variables starting with just UCT_.

in filename If non-NULL, read configuration from this file. If the file does not exist, or exists but
cannot be opened or read, it will be ignored.

out config_p Filled with a pointer to the configuration.

Returns

Error code.

6.2.9.5.9 uct_cm_client_ep_conn_notify()

ucs_status_t uct_cm_client_ep_conn_notify (

uct_ep_h ep)

This routine should be called on the client side after the client completed establishing its connection to the server.
The routine will send a notification message to the server indicating that the client is connected.

Parameters

in ep The connected endpoint on the client side.

Returns

Error code.

6.2.9.5.10 uct_listener_create()

ucs_status_t uct_listener_create (

uct_cm_h cm,

const struct sockaddr ∗ saddr,

socklen_t socklen,

const uct_listener_params_t ∗ params,

uct_listener_h ∗ listener_p)

This routine creates a new listener on the given CM which will start listening on a given sockaddr.

Parameters

in cm Connection manager on which to open the listener. This cm should not be closed as long
as there are open listeners on it.

in saddr The socket address to listen on.
in socklen The saddr length.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.2 Unified Communication Transport (UCT) API 231

Parameters

in params User defined uct_listener_params_t configurations for the listener_p.

out listener←↩

_p
Filled with handle to the new listener.

Returns

Error code.

6.2.9.5.11 uct_listener_destroy()

void uct_listener_destroy (

uct_listener_h listener)

Parameters

in listener Listener to destroy.

6.2.9.5.12 uct_listener_reject()

ucs_status_t uct_listener_reject (

uct_listener_h listener,

uct_conn_request_h conn_request)

This routine can be invoked on the server side. It rejects a connection request from the client.

Parameters

in listener Listener which will reject the connection request.

in conn_request Connection establishment request passed as parameter of
uct_cm_listener_conn_request_callback_t in
uct_cm_listener_conn_request_args_t::conn_request.

Returns

Error code as defined by ucs_status_t

6.2.9.5.13 uct_listener_query()

ucs_status_t uct_listener_query (

uct_listener_h listener,

uct_listener_attr_t ∗ listener_attr)

This routine queries the listener for its attributes uct_listener_attr_t.

Parameters

in listener Listener object to query.

out listener_attr Filled with attributes of the listener.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

232 Module Documentation

Returns

Error code as defined by ucs_status_t

6.3 Unified Communication Services (UCS) API

Modules

• UCS Communication Resource

6.3.1 Detailed Description

This section describes UCS API.

6.3.2 UCS Communication Resource

Data Structures

• struct ucs_sock_addr

Typedefs

• typedef void(∗ ucs_async_event_cb_t) (int id, ucs_event_set_types_t events, void ∗arg)
• typedef struct ucs_sock_addr ucs_sock_addr_t
• typedef enum ucs_memory_type ucs_memory_type_t

Memory types.

• typedef unsigned long ucs_time_t
• typedef void ∗ ucs_status_ptr_t

Status pointer.

Enumerations

• enum ucs_callbackq_flags { UCS_CALLBACKQ_FLAG_FAST = UCS_BIT(0) , UCS_CALLBACKQ_FLAG_ONESHOT
= UCS_BIT(1) }

• enum ucs_memory_type {
UCS_MEMORY_TYPE_HOST , UCS_MEMORY_TYPE_CUDA , UCS_MEMORY_TYPE_CUDA_MANAGED
, UCS_MEMORY_TYPE_ROCM ,
UCS_MEMORY_TYPE_ROCM_MANAGED , UCS_MEMORY_TYPE_RDMA , UCS_MEMORY_TYPE_ZE_HOST
, UCS_MEMORY_TYPE_ZE_DEVICE ,
UCS_MEMORY_TYPE_ZE_MANAGED , UCS_MEMORY_TYPE_LAST , UCS_MEMORY_TYPE_UNKNOWN
= UCS_MEMORY_TYPE_LAST }

Memory types.

• enum ucs_status_t {
UCS_OK = 0 , UCS_INPROGRESS = 1 , UCS_ERR_NO_MESSAGE = -1 , UCS_ERR_NO_RESOURCE =
-2 ,
UCS_ERR_IO_ERROR = -3 , UCS_ERR_NO_MEMORY = -4 , UCS_ERR_INVALID_PARAM = -5 ,
UCS_ERR_UNREACHABLE = -6 ,
UCS_ERR_INVALID_ADDR = -7 , UCS_ERR_NOT_IMPLEMENTED = -8 , UCS_ERR_MESSAGE_TRUNCATED
= -9 , UCS_ERR_NO_PROGRESS = -10 ,
UCS_ERR_BUFFER_TOO_SMALL = -11 , UCS_ERR_NO_ELEM = -12 , UCS_ERR_SOME_CONNECTS_FAILED
= -13 , UCS_ERR_NO_DEVICE = -14 ,
UCS_ERR_BUSY = -15 , UCS_ERR_CANCELED = -16 , UCS_ERR_SHMEM_SEGMENT = -17 ,
UCS_ERR_ALREADY_EXISTS = -18 ,

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.3 Unified Communication Services (UCS) API 233

UCS_ERR_OUT_OF_RANGE = -19 , UCS_ERR_TIMED_OUT = -20 , UCS_ERR_EXCEEDS_LIMIT = -21 ,
UCS_ERR_UNSUPPORTED = -22 ,
UCS_ERR_REJECTED = -23 , UCS_ERR_NOT_CONNECTED = -24 , UCS_ERR_CONNECTION_RESET
= -25 , UCS_ERR_FIRST_LINK_FAILURE = -40 ,
UCS_ERR_LAST_LINK_FAILURE = -59 , UCS_ERR_FIRST_ENDPOINT_FAILURE = -60 , UCS_ERR_ENDPOINT_TIMEOUT
= -80 , UCS_ERR_LAST_ENDPOINT_FAILURE = -89 ,
UCS_ERR_LAST = -100 }

Status codes.

• enum ucs_thread_mode_t { UCS_THREAD_MODE_SINGLE , UCS_THREAD_MODE_SERIALIZED ,
UCS_THREAD_MODE_MULTI , UCS_THREAD_MODE_LAST }

Thread sharing mode.

Functions

• ucs_status_t ucs_async_set_event_handler (ucs_async_mode_t mode, int event_fd, ucs_event_set_types←↩

_t events, ucs_async_event_cb_t cb, void ∗arg, ucs_async_context_t ∗async)
• ucs_status_t ucs_async_add_timer (ucs_async_mode_t mode, ucs_time_t interval, ucs_async_event_cb_t

cb, void ∗arg, ucs_async_context_t ∗async, int ∗timer_id_p)
• ucs_status_t ucs_async_remove_handler (int id, int sync)
• ucs_status_t ucs_async_modify_handler (int fd, ucs_event_set_types_t events)
• ucs_status_t ucs_async_context_create (ucs_async_mode_t mode, ucs_async_context_t ∗∗async_p)

Create an asynchronous execution context.

• void ucs_async_context_destroy (ucs_async_context_t ∗async)

Destroy the asynchronous execution context.

• void ucs_async_poll (ucs_async_context_t ∗async)

6.3.2.1 Detailed Description

This section describes a concept of the Communication Resource and routines associated with the concept.

6.3.2.2 Data Structure Documentation

6.3.2.2.1 struct ucs_sock_addr

BSD socket address specification.

Data Fields

const struct sockaddr ∗ addr Pointer to socket address
socklen_t addrlen Address length

6.3.2.3 Typedef Documentation

6.3.2.3.1 ucs_async_event_cb_t

typedef void(∗ ucs_async_event_cb_t) (int id, ucs_event_set_types_t events, void ∗arg)

Async event callback.

Parameters

id Event id (timer or file descriptor).

events The events that triggered the callback.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

234 Module Documentation

Parameters

arg User-defined argument.

6.3.2.3.2 ucs_sock_addr_t

typedef struct ucs_sock_addr ucs_sock_addr_t

BSD socket address specification.

6.3.2.3.3 ucs_memory_type_t

typedef enum ucs_memory_type ucs_memory_type_t

List of supported memory types.

6.3.2.3.4 ucs_time_t

typedef unsigned long ucs_time_t

UCS time units. These are not necessarily aligned with metric time units. MUST compare short time values with
UCS_SHORT_TIME_CMP to handle wrap-around.

6.3.2.3.5 ucs_status_ptr_t

typedef void∗ ucs_status_ptr_t

A pointer can represent one of these values:

• NULL / UCS_OK

• Error code pointer (UCS_ERR_xx)

• Valid pointer

6.3.2.4 Enumeration Type Documentation

6.3.2.4.1 ucs_callbackq_flags

enum ucs_callbackq_flags

Copyright (c) NVIDIA CORPORATION & AFFILIATES, 2023. ALL RIGHTS RESERVED.

See file LICENSE for terms.

Callback backward compatibility flags

Enumerator

UCS_CALLBACKQ_FLAG_FAST Fast-path (best effort)

UCS_CALLBACKQ_FLAG_ONESHOT Call the callback only once (cannot be used with FAST)

6.3.2.4.2 ucs_memory_type

enum ucs_memory_type

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.3 Unified Communication Services (UCS) API 235

List of supported memory types.

Enumerator

UCS_MEMORY_TYPE_HOST Default system memory

UCS_MEMORY_TYPE_CUDA NVIDIA CUDA memory

UCS_MEMORY_TYPE_CUDA_MANAGED NVIDIA CUDA managed (or unified) memory

UCS_MEMORY_TYPE_ROCM AMD ROCM memory

UCS_MEMORY_TYPE_ROCM_MANAGED AMD ROCM managed system memory

UCS_MEMORY_TYPE_RDMA RDMA device memory

UCS_MEMORY_TYPE_ZE_HOST Intel ZE memory (USM host)

UCS_MEMORY_TYPE_ZE_DEVICE Intel ZE memory (USM device)

UCS_MEMORY_TYPE_ZE_MANAGED Intel ZE managed memory (USM shared)

UCS_MEMORY_TYPE_LAST
UCS_MEMORY_TYPE_UNKNOWN

6.3.2.4.3 ucs_status_t

enum ucs_status_t

Note

In order to evaluate the necessary steps to recover from a certain error, all error codes which can be returned
by the external API are grouped by the largest entity permanently effected by the error. Each group ranges
between its UCS_ERR_FIRST_<name> and UCS_ERR_LAST_<name> enum values. For example, if a
link fails it may be sufficient to destroy (and possibly replace) it, in contrast to an endpoint-level error.

Enumerator

UCS_OK
UCS_INPROGRESS

UCS_ERR_NO_MESSAGE
UCS_ERR_NO_RESOURCE

UCS_ERR_IO_ERROR
UCS_ERR_NO_MEMORY

UCS_ERR_INVALID_PARAM
UCS_ERR_UNREACHABLE
UCS_ERR_INVALID_ADDR

UCS_ERR_NOT_IMPLEMENTED
UCS_ERR_MESSAGE_TRUNCATED

UCS_ERR_NO_PROGRESS
UCS_ERR_BUFFER_TOO_SMALL

UCS_ERR_NO_ELEM
UCS_ERR_SOME_CONNECTS_FAILED

UCS_ERR_NO_DEVICE
UCS_ERR_BUSY

UCS_ERR_CANCELED
UCS_ERR_SHMEM_SEGMENT
UCS_ERR_ALREADY_EXISTS
UCS_ERR_OUT_OF_RANGE

UCS_ERR_TIMED_OUT

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

236 Module Documentation

Enumerator

UCS_ERR_EXCEEDS_LIMIT
UCS_ERR_UNSUPPORTED

UCS_ERR_REJECTED
UCS_ERR_NOT_CONNECTED

UCS_ERR_CONNECTION_RESET
UCS_ERR_FIRST_LINK_FAILURE
UCS_ERR_LAST_LINK_FAILURE

UCS_ERR_FIRST_ENDPOINT_FAILURE
UCS_ERR_ENDPOINT_TIMEOUT

UCS_ERR_LAST_ENDPOINT_FAILURE
UCS_ERR_LAST

Examples

uct_hello_world.c.

6.3.2.4.4 ucs_thread_mode_t

enum ucs_thread_mode_t

Specifies thread sharing mode of an object.

Enumerator

UCS_THREAD_MODE_SINGLE Only the master thread can access (i.e. the thread that initialized the
context; multiple threads may exist and never access)

UCS_THREAD_MODE_SERIALIZED Multiple threads can access, but only one at a time

UCS_THREAD_MODE_MULTI Multiple threads can access concurrently

UCS_THREAD_MODE_LAST

6.3.2.5 Function Documentation

6.3.2.5.1 ucs_async_set_event_handler()

ucs_status_t ucs_async_set_event_handler (

ucs_async_mode_t mode,

int event_fd,

ucs_event_set_types_t events,

ucs_async_event_cb_t cb,

void ∗ arg,

ucs_async_context_t ∗ async)

Register a file descriptor for monitoring (call handler upon events). Every fd can have only one handler.

Parameters

mode Thread or signal.

event←↩

_fd
File descriptor to set handler for.

events Events to wait on (UCS_EVENT_SET_EVxxx bits).

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.3 Unified Communication Services (UCS) API 237

Parameters

cb Callback function to execute.
arg Argument to callback.

async Async context to which events are delivered. If NULL, safety is up to the user.

Returns

Error code as defined by ucs_status_t.

6.3.2.5.2 ucs_async_add_timer()

ucs_status_t ucs_async_add_timer (

ucs_async_mode_t mode,

ucs_time_t interval,

ucs_async_event_cb_t cb,

void ∗ arg,

ucs_async_context_t ∗ async,

int ∗ timer_id_p)

Add timer handler.

Parameters

mode Thread or signal.

interval Timer interval.
cb Callback function to execute.
arg Argument to callback.

async Async context to which events are delivered. If NULL, safety is up to the user.

timer_id←↩

_p
Filled with timer id.

Returns

Error code as defined by ucs_status_t.

6.3.2.5.3 ucs_async_remove_handler()

ucs_status_t ucs_async_remove_handler (

int id,

int sync)

Remove an event handler (Timer or event file).

Parameters

id Timer/FD to remove.
sync If nonzero, wait until the handler for this event is not running anymore. If called from the context of the

callback, the handler will be removed immediately after the current callback returns.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

238 Module Documentation

Returns

Error code as defined by ucs_status_t.

6.3.2.5.4 ucs_async_modify_handler()

ucs_status_t ucs_async_modify_handler (

int fd,

ucs_event_set_types_t events)

Modify events mask for an existing event handler (event file).

Parameters

fd File descriptor modify events for.

events New set of events to wait on (UCS_EVENT_SET_EVxxx bits).

Returns

Error code as defined by ucs_status_t.

6.3.2.5.5 ucs_async_context_create()

ucs_status_t ucs_async_context_create (

ucs_async_mode_t mode,

ucs_async_context_t ∗∗ async_p)

Allocate and initialize an asynchronous execution context. This can be used to ensure safe event delivery.

Parameters

mode Indicates whether to use signals or polling threads for waiting.

async←↩

_p
Event context pointer to initialize.

Returns

Error code as defined by ucs_status_t.

Examples

uct_hello_world.c.

6.3.2.5.6 ucs_async_context_destroy()

void ucs_async_context_destroy (

ucs_async_context_t ∗ async)

Clean up the async context, and release system resources if possible. The context memory released.

Parameters

async Asynchronous context to clean up.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

6.3 Unified Communication Services (UCS) API 239

Examples

uct_hello_world.c.

6.3.2.5.7 ucs_async_poll()

void ucs_async_poll (

ucs_async_context_t ∗ async)

Poll on async context.

Parameters

async Async context to poll on. NULL polls on all.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

240 Module Documentation

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

Chapter 7

Data Structure Documentation

7.1 ucp_generic_dt_ops Struct Reference

UCP generic data type descriptor.

Data Fields

• void ∗(∗ start_pack)(void ∗context, const void ∗buffer, size_t count)

Start a packing request.

• void ∗(∗ start_unpack)(void ∗context, void ∗buffer, size_t count)

Start an unpacking request.

• size_t(∗ packed_size)(void ∗state)

Get the total size of packed data.

• size_t(∗ pack)(void ∗state, size_t offset, void ∗dest, size_t max_length)

Pack data.

• ucs_status_t(∗ unpack)(void ∗state, size_t offset, const void ∗src, size_t length)

Unpack data.

• void(∗ finish)(void ∗state)

Finish packing/unpacking.

7.1.1 Detailed Description

This structure provides a generic datatype descriptor that is used for definition of application defined datatypes.

Typically, the descriptor is used for an integration with datatype engines implemented within MPI and SHMEM
implementations.

Note

In case of partial receive, any amount of received data is acceptable which matches buffer size.

The documentation for this struct was generated from the following file:

• ucp.h

7.2 uct_tag_context Struct Reference

Posted tag context.

242 Data Structure Documentation

Data Fields

• void(∗ tag_consumed_cb)(uct_tag_context_t ∗self)
• void(∗ completed_cb)(uct_tag_context_t ∗self, uct_tag_t stag, uint64_t imm, size_t length, void ∗inline_data,

ucs_status_t status)
• void(∗ rndv_cb)(uct_tag_context_t ∗self, uct_tag_t stag, const void ∗header, unsigned header_length,

ucs_status_t status, unsigned flags)
• char priv [UCT_TAG_PRIV_LEN]

7.2.1 Detailed Description

Tag context is an object which tracks a tag posted to the transport. It contains callbacks for matching events on this
tag.

7.2.2 Field Documentation

7.2.2.1 tag_consumed_cb

void(∗ uct_tag_context::tag_consumed_cb) (uct_tag_context_t ∗self)

Tag is consumed by the transport and should not be matched in software.

Parameters

in self Pointer to relevant context structure, which was initially passed to uct_iface_tag_recv_zcopy.

7.2.2.2 completed_cb

void(∗ uct_tag_context::completed_cb) (uct_tag_context_t ∗self, uct_tag_t stag, uint64_t imm,

size_t length, void ∗inline_data, ucs_status_t status)

Tag processing is completed by the transport.

Parameters

in self Pointer to relevant context structure, which was initially passed to
uct_iface_tag_recv_zcopy.

in stag Tag from sender.

in imm Immediate data from sender. For rendezvous, it's always 0.

in length Completed length.

in inline_data If non-null, points to a temporary buffer which contains the received data. In this case the
received data was not placed directly in the receive buffer. This callback routine is
responsible for copy-out the inline data, otherwise it is released.

in status Completion status: (a) UCS_OK - Success, data placed in provided buffer. (b)
UCS_ERR_TRUNCATED - Sender's length exceed posted buffer, no data is copied. (c)
UCS_ERR_CANCELED - Canceled by user.

7.2.2.3 rndv_cb

void(∗ uct_tag_context::rndv_cb) (uct_tag_context_t ∗self, uct_tag_t stag, const void ∗header,
unsigned header_length, ucs_status_t status, unsigned flags)

Tag was matched by a rendezvous request, which should be completed by the protocol layer.

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

7.2 uct_tag_context Struct Reference 243

Parameters

in self Pointer to relevant context structure, which was initially passed to
uct_iface_tag_recv_zcopy.

in stag Tag from sender.

in header User defined header.
in header_length User defined header length in bytes.

in status Completion status.

in flags Flags defined by UCT_TAG_RECV_CB_xx.

7.2.2.4 priv

char uct_tag_context::priv[UCT_TAG_PRIV_LEN]

A placeholder for the private data used by the transport

The documentation for this struct was generated from the following file:

• uct.h

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

244 Data Structure Documentation

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

Chapter 8

Examples

8.1 ucp_hello_world.c

UCP hello world client / server example utility.

#ifndef HAVE_CONFIG_H
define HAVE_CONFIG_H /* Force using config.h, so test would fail if header

actually tries to use it */
#endif

/*
* UCP hello world client / server example utility

* ---

*
* Server side:

*
* ./ucp_hello_world

*
* Client side:

*
* ./ucp_hello_world -n <server host name>

*
* Notes:

*
* - Client acquires Server UCX address via TCP socket

*
*
* Author:

*
* Ilya Nelkenbaum <ilya@nelkenbaum.com>

* Sergey Shalnov <sergeysh@mellanox.com> 7-June-2016

*/

#include "hello_world_util.h"
#include "ucp_util.h"

#include <ucp/api/ucp.h>

#include <sys/socket.h>
#include <sys/types.h>
#include <sys/epoll.h>
#include <netinet/in.h>
#include <assert.h>
#include <netdb.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h> /* getopt */
#include <pthread.h> /* pthread_self */
#include <errno.h> /* errno */
#include <time.h>
#include <signal.h> /* raise */

struct msg {
uint64_t data_len;

};

struct ucx_context {
int completed;

};

enum ucp_test_mode_t {

246 Examples

TEST_MODE_PROBE,
TEST_MODE_WAIT,
TEST_MODE_EVENTFD

} ucp_test_mode = TEST_MODE_PROBE;

typedef enum {
FAILURE_MODE_NONE,
FAILURE_MODE_SEND, /* fail send operation on server */
FAILURE_MODE_RECV, /* fail receive operation on client */
FAILURE_MODE_KEEPALIVE /* fail without communication on client */

} failure_mode_t;

static struct err_handling {
ucp_err_handling_mode_t ucp_err_mode;
failure_mode_t failure_mode;

} err_handling_opt;

static ucs_status_t ep_status = UCS_OK;
static uint16_t server_port = 13337;
static sa_family_t ai_family = AF_INET;
static long test_string_length = 16;
static const ucp_tag_t tag = 0x1337a880u;
static const ucp_tag_t tag_mask = UINT64_MAX;
static const char *addr_msg_str = "UCX address message";
static const char *data_msg_str = "UCX data message";
static int print_config = 0;

static parse_cmd_status_t
parse_cmd(int argc, char *const argv[], char **server_name);

static void set_msg_data_len(struct msg *msg, uint64_t data_len)
{

mem_type_memcpy(&msg->data_len, &data_len, sizeof(data_len));
}

static void request_init(void *request)
{

struct ucx_context *context = (struct ucx_context *)request;

context->completed = 0;
}

static void send_handler(void *request, ucs_status_t status, void *ctx)
{

struct ucx_context *context = (struct ucx_context *)request;
const char *str = (const char *)ctx;

context->completed = 1;

printf("[0x%x] send handler called for \"%s\" with status %d (%s)\n",
(unsigned int)pthread_self(), str, status,
ucs_status_string(status));

}

static void failure_handler(void *arg, ucp_ep_h ep, ucs_status_t status)
{

ucs_status_t *arg_status = (ucs_status_t *)arg;

printf("[0x%x] failure handler called with status %d (%s)\n",
(unsigned int)pthread_self(), status, ucs_status_string(status));

*arg_status = status;
}

static void recv_handler(void *request, ucs_status_t status,
const ucp_tag_recv_info_t *info, void *user_data)

{
struct ucx_context *context = (struct ucx_context *)request;

context->completed = 1;

printf("[0x%x] receive handler called with status %d (%s), length %lu\n",
(unsigned int)pthread_self(), status, ucs_status_string(status),
info->length);

}

static ucs_status_t ucx_wait(ucp_worker_h ucp_worker, struct ucx_context *request,
const char *op_str, const char *data_str)

{
ucs_status_t status;

if (UCS_PTR_IS_ERR(request)) {
status = UCS_PTR_STATUS(request);

} else if (UCS_PTR_IS_PTR(request)) {
while (!request->completed) {

ucp_worker_progress(ucp_worker);

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

8.1 ucp_hello_world.c 247

}

request->completed = 0;
status = ucp_request_check_status(request);
ucp_request_free(request);

} else {
status = UCS_OK;

}

if (status != UCS_OK) {
fprintf(stderr, "unable to %s %s (%s)\n", op_str, data_str,

ucs_status_string(status));
} else {

printf("finish to %s %s\n", op_str, data_str);
}

return status;
}

static ucs_status_t test_poll_wait(ucp_worker_h ucp_worker)
{

int err = 0;
ucs_status_t ret = UCS_ERR_NO_MESSAGE;
int epoll_fd_local = 0;
int epoll_fd = 0;
ucs_status_t status;
struct epoll_event ev;
ev.data.u64 = 0;

status = ucp_worker_get_efd(ucp_worker, &epoll_fd);
CHKERR_JUMP(UCS_OK != status, "ucp_worker_get_efd", err);

/* It is recommended to copy original fd */
epoll_fd_local = epoll_create(1);

ev.data.fd = epoll_fd;
ev.events = EPOLLIN;
err = epoll_ctl(epoll_fd_local, EPOLL_CTL_ADD, epoll_fd, &ev);
CHKERR_JUMP(err < 0, "add original socket to the new epoll\n", err_fd);

/* Need to prepare ucp_worker before epoll_wait */
status = ucp_worker_arm(ucp_worker);
if (status == UCS_ERR_BUSY) { /* some events are arrived already */

ret = UCS_OK;
goto err_fd;

}
CHKERR_JUMP(status != UCS_OK, "ucp_worker_arm\n", err_fd);

do {
err = epoll_wait(epoll_fd_local, &ev, 1, -1);

} while ((err == -1) && (errno == EINTR));

ret = UCS_OK;

err_fd:
close(epoll_fd_local);

err:
return ret;

}

static void ep_close_err_mode(ucp_worker_h ucp_worker, ucp_ep_h ucp_ep)
{

uint64_t ep_close_flags;

if (err_handling_opt.ucp_err_mode == UCP_ERR_HANDLING_MODE_PEER) {
ep_close_flags = UCP_EP_CLOSE_FLAG_FORCE;

} else {
ep_close_flags = 0;

}

ep_close(ucp_worker, ucp_ep, ep_close_flags);
}

static int run_ucx_client(ucp_worker_h ucp_worker,
ucp_address_t *local_addr, size_t local_addr_len,
ucp_address_t *peer_addr, size_t peer_addr_len)

{
struct msg *msg = NULL;
size_t msg_len = 0;
int ret = -1;
ucp_request_param_t send_param, recv_param;
ucp_tag_recv_info_t info_tag;
ucp_tag_message_h msg_tag;
ucs_status_t status;
ucp_ep_h server_ep;
ucp_ep_params_t ep_params;

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

248 Examples

struct ucx_context *request;
char *str;

/* Send client UCX address to server */
ep_params.field_mask = UCP_EP_PARAM_FIELD_REMOTE_ADDRESS |

UCP_EP_PARAM_FIELD_ERR_HANDLING_MODE |
UCP_EP_PARAM_FIELD_ERR_HANDLER |
UCP_EP_PARAM_FIELD_USER_DATA;

ep_params.address = peer_addr;
ep_params.err_mode = err_handling_opt.ucp_err_mode;
ep_params.err_handler.cb = failure_handler;
ep_params.err_handler.arg = NULL;
ep_params.user_data = &ep_status;

status = ucp_ep_create(ucp_worker, &ep_params, &server_ep);
CHKERR_JUMP(status != UCS_OK, "ucp_ep_create\n", err);

msg_len = sizeof(*msg) + local_addr_len;
msg = malloc(msg_len);
CHKERR_JUMP(msg == NULL, "allocate memory\n", err_ep);
memset(msg, 0, msg_len);

msg->data_len = local_addr_len;
memcpy(msg + 1, local_addr, local_addr_len);

send_param.op_attr_mask = UCP_OP_ATTR_FIELD_CALLBACK |
UCP_OP_ATTR_FIELD_USER_DATA;

send_param.cb.send = send_handler;
send_param.user_data = (void*)addr_msg_str;
request = ucp_tag_send_nbx(server_ep, msg, msg_len, tag,

&send_param);
status = ucx_wait(ucp_worker, request, "send",

addr_msg_str);
if (status != UCS_OK) {

free(msg);
goto err_ep;

}

free(msg);

if (err_handling_opt.failure_mode == FAILURE_MODE_RECV) {
fprintf(stderr, "Emulating failure before receive operation on client side\n");
raise(SIGKILL);

}

/* Receive test string from server */
for (;;) {

CHKERR_JUMP(ep_status != UCS_OK, "receive data: EP disconnected\n", err_ep);
/* Probing incoming events in non-block mode */
msg_tag = ucp_tag_probe_nb(ucp_worker, tag, tag_mask, 1, &info_tag);
if (msg_tag != NULL) {

/* Message arrived */
break;

} else if (ucp_worker_progress(ucp_worker)) {
/* Some events were polled; try again without going to sleep */
continue;

}

/* If we got here, ucp_worker_progress() returned 0, so we can sleep.

* Following blocked methods used to polling internal file descriptor

* to make CPU idle and don’t spin loop

*/
if (ucp_test_mode == TEST_MODE_WAIT) {

/* Polling incoming events*/
status = ucp_worker_wait(ucp_worker);
CHKERR_JUMP(status != UCS_OK, "ucp_worker_wait\n", err_ep);

} else if (ucp_test_mode == TEST_MODE_EVENTFD) {
status = test_poll_wait(ucp_worker);
CHKERR_JUMP(status != UCS_OK, "test_poll_wait\n", err_ep);

}
}

if (err_handling_opt.failure_mode == FAILURE_MODE_KEEPALIVE) {
fprintf(stderr, "Emulating unexpected failure after receive completion "

"on client side, server should detect error by "
"keepalive mechanism\n");

raise(SIGKILL);
}

msg = mem_type_malloc(info_tag.length);
CHKERR_JUMP(msg == NULL, "allocate memory\n", err_ep);

recv_param.op_attr_mask = UCP_OP_ATTR_FIELD_CALLBACK |
UCP_OP_ATTR_FIELD_DATATYPE |
UCP_OP_ATTR_FLAG_NO_IMM_CMPL;

recv_param.datatype = ucp_dt_make_contig(1);

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

8.1 ucp_hello_world.c 249

recv_param.cb.recv = recv_handler;

request = ucp_tag_msg_recv_nbx(ucp_worker, msg, info_tag.length, msg_tag,
&recv_param);

status = ucx_wait(ucp_worker, request, "receive", data_msg_str);
if (status != UCS_OK) {

mem_type_free(msg);
goto err_ep;

}

str = calloc(1, test_string_length);
if (str == NULL) {

fprintf(stderr, "Memory allocation failed\n");
ret = -1;
goto err_msg;

}

mem_type_memcpy(str, msg + 1, test_string_length);
printf("\n\n----- UCP TEST SUCCESS ----\n\n");
printf("%s", str);
printf("\n\n---------------------------\n\n");
free(str);
ret = 0;

err_msg:
mem_type_free(msg);

err_ep:
ep_close_err_mode(ucp_worker, server_ep);

err:
return ret;

}

static ucs_status_t flush_ep(ucp_worker_h worker, ucp_ep_h ep)
{

ucp_request_param_t param;
void *request;

param.op_attr_mask = 0;
request = ucp_ep_flush_nbx(ep, ¶m);
if (request == NULL) {

return UCS_OK;
} else if (UCS_PTR_IS_ERR(request)) {

return UCS_PTR_STATUS(request);
} else {

ucs_status_t status;
do {

ucp_worker_progress(worker);
status = ucp_request_check_status(request);

} while (status == UCS_INPROGRESS);
ucp_request_free(request);
return status;

}
}

static int run_ucx_server(ucp_worker_h ucp_worker)
{

struct msg *msg = NULL;
struct ucx_context *request = NULL;
size_t msg_len = 0;
ucp_request_param_t send_param, recv_param;
ucp_tag_recv_info_t info_tag;
ucp_tag_message_h msg_tag;
ucs_status_t status;
ucp_ep_h client_ep;
ucp_ep_params_t ep_params;
ucp_address_t *peer_addr;
size_t peer_addr_len;

int ret;

/* Receive client UCX address */
do {

/* Progressing before probe to update the state */
ucp_worker_progress(ucp_worker);

/* Probing incoming events in non-block mode */
msg_tag = ucp_tag_probe_nb(ucp_worker, tag, tag_mask, 1, &info_tag);

} while (msg_tag == NULL);

msg = malloc(info_tag.length);
CHKERR_ACTION(msg == NULL, "allocate memory\n", ret = -1; goto err);

recv_param.op_attr_mask = UCP_OP_ATTR_FIELD_CALLBACK |
UCP_OP_ATTR_FIELD_DATATYPE |
UCP_OP_ATTR_FLAG_NO_IMM_CMPL;

recv_param.datatype = ucp_dt_make_contig(1);

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

250 Examples

recv_param.cb.recv = recv_handler;

request = ucp_tag_msg_recv_nbx(ucp_worker, msg, info_tag.length,
msg_tag, &recv_param);

status = ucx_wait(ucp_worker, request, "receive", addr_msg_str);
if (status != UCS_OK) {

free(msg);
ret = -1;
goto err;

}

if (err_handling_opt.failure_mode == FAILURE_MODE_SEND) {
fprintf(stderr, "Emulating unexpected failure on server side, client "

"should detect error by keepalive mechanism\n");
free(msg);
raise(SIGKILL);
exit(1);

}

peer_addr_len = msg->data_len;
peer_addr = malloc(peer_addr_len);
if (peer_addr == NULL) {

fprintf(stderr, "unable to allocate memory for peer address\n");
free(msg);
ret = -1;
goto err;

}

memcpy(peer_addr, msg + 1, peer_addr_len);

free(msg);

/* Send test string to client */
ep_params.field_mask = UCP_EP_PARAM_FIELD_REMOTE_ADDRESS |

UCP_EP_PARAM_FIELD_ERR_HANDLING_MODE |
UCP_EP_PARAM_FIELD_ERR_HANDLER |
UCP_EP_PARAM_FIELD_USER_DATA;

ep_params.address = peer_addr;
ep_params.err_mode = err_handling_opt.ucp_err_mode;
ep_params.err_handler.cb = failure_handler;
ep_params.err_handler.arg = NULL;
ep_params.user_data = &ep_status;

status = ucp_ep_create(ucp_worker, &ep_params, &client_ep);
/* If peer failure testing was requested, it could be possible that UCP EP

* couldn’t be created; in this case set `ret = 0‘ to report success */
ret = (err_handling_opt.failure_mode != FAILURE_MODE_NONE) ? 0 : -1;
CHKERR_ACTION(status != UCS_OK, "ucp_ep_create\n", goto err);

msg_len = sizeof(*msg) + test_string_length;
msg = mem_type_malloc(msg_len);
CHKERR_ACTION(msg == NULL, "allocate memory\n", ret = -1; goto err_ep);
mem_type_memset(msg, 0, msg_len);

set_msg_data_len(msg, msg_len - sizeof(*msg));
ret = generate_test_string((char *)(msg + 1), test_string_length);
CHKERR_JUMP(ret < 0, "generate test string", err_free_mem_type_msg);

if (err_handling_opt.failure_mode == FAILURE_MODE_RECV) {
/* Sleep for small amount of time to ensure that client was killed

* and peer failure handling is covered */
sleep(5);

}

ucp_worker_progress(ucp_worker);

send_param.op_attr_mask = UCP_OP_ATTR_FIELD_CALLBACK |
UCP_OP_ATTR_FIELD_USER_DATA |
UCP_OP_ATTR_FIELD_MEMORY_TYPE;

send_param.cb.send = send_handler;
send_param.user_data = (void*)data_msg_str;
send_param.memory_type = test_mem_type;
request = ucp_tag_send_nbx(client_ep, msg, msg_len, tag,

&send_param);
status = ucx_wait(ucp_worker, request, "send",

data_msg_str);
if (status != UCS_OK) {

if (err_handling_opt.failure_mode != FAILURE_MODE_NONE) {
ret = -1;

} else {
/* If peer failure testing was requested, set `ret = 0‘ to report

* success from the application */
ret = 0;

/* Make sure that failure_handler was called */
while (ep_status == UCS_OK) {

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

8.1 ucp_hello_world.c 251

ucp_worker_progress(ucp_worker);
}

}
goto err_free_mem_type_msg;

}

if (err_handling_opt.failure_mode == FAILURE_MODE_KEEPALIVE) {
fprintf(stderr, "Waiting for client is terminated\n");
while (ep_status == UCS_OK) {

ucp_worker_progress(ucp_worker);
}

}

status = flush_ep(ucp_worker, client_ep);
printf("flush_ep completed with status %d (%s)\n",

status, ucs_status_string(status));

ret = 0;

err_free_mem_type_msg:
mem_type_free(msg);

err_ep:
ep_close_err_mode(ucp_worker, client_ep);

err:
return ret;

}

static void progress_worker(void *arg)
{

ucp_worker_progress((ucp_worker_h)arg);
}

int main(int argc, char **argv)
{

/* UCP temporary vars */
ucp_params_t ucp_params;
ucp_worker_attr_t worker_attr;
ucp_worker_params_t worker_params;
ucp_config_t *config;
ucs_status_t status;

/* UCP handler objects */
ucp_context_h ucp_context;
ucp_worker_h ucp_worker;

/* OOB connection vars */
uint64_t local_addr_len = 0;
ucp_address_t *local_addr = NULL;
uint64_t peer_addr_len = 0;
ucp_address_t *peer_addr = NULL;
char *client_target_name = NULL;
int oob_sock = -1;
int ret = -1;

parse_cmd_status_t parse_cmd_status;

memset(&ucp_params, 0, sizeof(ucp_params));
memset(&worker_attr, 0, sizeof(worker_attr));
memset(&worker_params, 0, sizeof(worker_params));

/* Parse the command line */
parse_cmd_status = parse_cmd(argc, argv, &client_target_name);
if (parse_cmd_status == PARSE_CMD_STATUS_PRINT_HELP) {

return 0;
}

CHKERR_JUMP(parse_cmd_status == PARSE_CMD_STATUS_ERROR,
"parse command line\n", err);

/* UCP initialization */
status = ucp_config_read(NULL, NULL, &config);
CHKERR_JUMP(status != UCS_OK, "ucp_config_read\n", err);

ucp_params.field_mask = UCP_PARAM_FIELD_FEATURES |
UCP_PARAM_FIELD_REQUEST_SIZE |
UCP_PARAM_FIELD_REQUEST_INIT |
UCP_PARAM_FIELD_NAME;

ucp_params.features = UCP_FEATURE_TAG;
if (ucp_test_mode == TEST_MODE_WAIT || ucp_test_mode == TEST_MODE_EVENTFD) {

ucp_params.features |= UCP_FEATURE_WAKEUP;
}
ucp_params.request_size = sizeof(struct ucx_context);
ucp_params.request_init = request_init;

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

252 Examples

ucp_params.name = "hello_world";

status = ucp_init(&ucp_params, config, &ucp_context);

if (print_config) {
ucp_config_print(config, stdout, NULL, UCS_CONFIG_PRINT_CONFIG);

}

ucp_config_release(config);
CHKERR_JUMP(status != UCS_OK, "ucp_init\n", err);

worker_params.field_mask = UCP_WORKER_PARAM_FIELD_THREAD_MODE;
worker_params.thread_mode = UCS_THREAD_MODE_SINGLE;

status = ucp_worker_create(ucp_context, &worker_params, &ucp_worker);
CHKERR_JUMP(status != UCS_OK, "ucp_worker_create\n", err_cleanup);

worker_attr.field_mask = UCP_WORKER_ATTR_FIELD_ADDRESS;

status = ucp_worker_query(ucp_worker, &worker_attr);
CHKERR_JUMP(status != UCS_OK, "ucp_worker_query\n", err_worker);
local_addr_len = worker_attr.address_length;
local_addr = worker_attr.address;

printf("[0x%x] local address length: %lu\n",
(unsigned int)pthread_self(), local_addr_len);

/* OOB connection establishment */
if (client_target_name != NULL) {

oob_sock = connect_common(client_target_name, server_port, ai_family);
CHKERR_JUMP(oob_sock < 0, "client_connect\n", err_addr);

ret = recv(oob_sock, &peer_addr_len, sizeof(peer_addr_len), MSG_WAITALL);
CHKERR_JUMP_RETVAL(ret != (int)sizeof(peer_addr_len),

"receive address length\n", err_addr, ret);

peer_addr = malloc(peer_addr_len);
CHKERR_JUMP(!peer_addr, "allocate memory\n", err_addr);

ret = recv(oob_sock, peer_addr, peer_addr_len, MSG_WAITALL);
CHKERR_JUMP_RETVAL(ret != (int)peer_addr_len,

"receive address\n", err_peer_addr, ret);
} else {

oob_sock = connect_common(NULL, server_port, ai_family);
CHKERR_JUMP(oob_sock < 0, "server_connect\n", err_peer_addr);

ret = send(oob_sock, &local_addr_len, sizeof(local_addr_len), 0);
CHKERR_JUMP_RETVAL(ret != (int)sizeof(local_addr_len),

"send address length\n", err_peer_addr, ret);

ret = send(oob_sock, local_addr, local_addr_len, 0);
CHKERR_JUMP_RETVAL(ret != (int)local_addr_len, "send address\n",

err_peer_addr, ret);
}

if (client_target_name != NULL) {
ret = run_ucx_client(ucp_worker,

local_addr, local_addr_len,
peer_addr, peer_addr_len);

} else {
ret = run_ucx_server(ucp_worker);

}

if (!ret && (err_handling_opt.failure_mode == FAILURE_MODE_NONE)) {
/* Make sure remote is disconnected before destroying local worker */
ret = barrier(oob_sock, progress_worker, ucp_worker);

}
close(oob_sock);

err_peer_addr:
free(peer_addr);

err_addr:
ucp_worker_release_address(ucp_worker, local_addr);

err_worker:
ucp_worker_destroy(ucp_worker);

err_cleanup:
ucp_cleanup(ucp_context);

err:
return ret;

}

static void print_usage()
{

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

8.1 ucp_hello_world.c 253

fprintf(stderr, "Usage: ucp_hello_world [parameters]\n");
fprintf(stderr, "UCP hello world client/server example utility\n");
fprintf(stderr, "\nParameters are:\n");
fprintf(stderr, " -w Select test mode \"wait\" to test "

"ucp_worker_wait function\n");
fprintf(stderr, " -f Select test mode \"event fd\" to test "

"ucp_worker_get_efd function with later poll\n");
fprintf(stderr, " -b Select test mode \"busy polling\" to test "

"ucp_tag_probe_nb and ucp_worker_progress (default)\n");
fprintf(stderr, " -n <name> Set node name or IP address "

"of the server (required for client and should be ignored "
"for server)\n");

fprintf(stderr, " -e <type> Emulate unexpected failure and handle an "
"error with enabled UCP_ERR_HANDLING_MODE_PEER\n");

fprintf(stderr, " send - send failure on server side "
"before send initiated\n");

fprintf(stderr, " recv - receive failure on client side "
"before receive completed\n");

fprintf(stderr, " keepalive - keepalive failure on client side "
"after communication completed\n");

fprintf(stderr, " -c Print UCP configuration\n");
print_common_help();
fprintf(stderr, "\n");

}

static parse_cmd_status_t
parse_cmd(int argc, char *const argv[], char **server_name)
{

int c = 0, idx = 0;

err_handling_opt.ucp_err_mode = UCP_ERR_HANDLING_MODE_NONE;
err_handling_opt.failure_mode = FAILURE_MODE_NONE;

while ((c = getopt(argc, argv, "wfb6e:n:p:s:m:ch")) != -1) {
switch (c) {
case ’w’:

ucp_test_mode = TEST_MODE_WAIT;
break;

case ’f’:
ucp_test_mode = TEST_MODE_EVENTFD;
break;

case ’b’:
ucp_test_mode = TEST_MODE_PROBE;
break;

case ’e’:
err_handling_opt.ucp_err_mode = UCP_ERR_HANDLING_MODE_PEER;
if (!strcmp(optarg, "recv")) {

err_handling_opt.failure_mode = FAILURE_MODE_RECV;
} else if (!strcmp(optarg, "send")) {

err_handling_opt.failure_mode = FAILURE_MODE_SEND;
} else if (!strcmp(optarg, "keepalive")) {

err_handling_opt.failure_mode = FAILURE_MODE_KEEPALIVE;
} else {

print_usage();
return PARSE_CMD_STATUS_ERROR;

}
break;

case ’n’:

*server_name = optarg;
break;

case ’6’:
ai_family = AF_INET6;
break;

case ’p’:
server_port = atoi(optarg);
if (server_port <= 0) {

fprintf(stderr, "Wrong server port number %d\n", server_port);
return PARSE_CMD_STATUS_ERROR;

}
break;

case ’s’:
test_string_length = atol(optarg);
if (test_string_length < 0) {

fprintf(stderr, "Wrong string size %ld\n", test_string_length);
return PARSE_CMD_STATUS_ERROR;

}
break;

case ’m’:
test_mem_type = parse_mem_type(optarg);
if (test_mem_type == UCS_MEMORY_TYPE_LAST) {

return PARSE_CMD_STATUS_ERROR;
}
break;

case ’c’:
print_config = 1;
break;

case ’h’:

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

254 Examples

print_usage();
return PARSE_CMD_STATUS_PRINT_HELP;

default:
print_usage();
return PARSE_CMD_STATUS_ERROR;

}
}
fprintf(stderr, "INFO: UCP_HELLO_WORLD mode = %d server = %s port = %d, pid = %d\n",

ucp_test_mode, *server_name, server_port, getpid());

for (idx = optind; idx < argc; idx++) {
fprintf(stderr, "WARNING: Non-option argument %s\n", argv[idx]);

}

return PARSE_CMD_STATUS_OK;
}

8.2 ucp_client_server.c

UCP client / server example using different APIs (tag, stream, am) utility.

/*
* UCP client - server example utility

* ---

*
* Server side:

*
* ./ucp_client_server

*
* Client side:

*
* ./ucp_client_server -a <server-ip>

*
* Notes:

*
* - The server will listen to incoming connection requests on INADDR_ANY.

* - The client needs to pass the IP address of the server side to connect to

* as an argument to the test.

* - Currently, the passed IP needs to be an IPoIB or a RoCE address.

* - The port which the server side would listen on can be modified with the

* ’-p’ option and should be used on both sides. The default port to use is

* 13337.

*/

#include "hello_world_util.h"
#include "ucp_util.h"

#include <ucp/api/ucp.h>

#include <string.h> /* memset */
#include <arpa/inet.h> /* inet_addr */
#include <unistd.h> /* getopt */
#include <stdlib.h> /* atoi */

#define DEFAULT_PORT 13337
#define IP_STRING_LEN 50
#define PORT_STRING_LEN 8
#define TAG 0xCAFE
#define COMM_TYPE_DEFAULT "STREAM"
#define PRINT_INTERVAL 2000
#define DEFAULT_NUM_ITERATIONS 1
#define TEST_AM_ID 0

static long test_string_length = 16;
static long iov_cnt = 1;
static uint16_t server_port = DEFAULT_PORT;
static sa_family_t ai_family = AF_INET;
static int num_iterations = DEFAULT_NUM_ITERATIONS;
static int connection_closed = 1;

typedef enum {
CLIENT_SERVER_SEND_RECV_STREAM = UCS_BIT(0),
CLIENT_SERVER_SEND_RECV_TAG = UCS_BIT(1),
CLIENT_SERVER_SEND_RECV_AM = UCS_BIT(2),
CLIENT_SERVER_SEND_RECV_DEFAULT = CLIENT_SERVER_SEND_RECV_STREAM

} send_recv_type_t;

typedef struct ucx_server_ctx {
volatile ucp_conn_request_h conn_request;
ucp_listener_h listener;

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

8.2 ucp_client_server.c 255

} ucx_server_ctx_t;

typedef struct test_req {
int complete;

} test_req_t;

static struct {
volatile int complete;
int is_rndv;
void *desc;
void *recv_buf;

} am_data_desc = {0, 0, NULL, NULL};

static void usage(void);

static void buffer_free(ucp_dt_iov_t *iov, size_t iov_size)
{

size_t idx;

for (idx = 0; idx < iov_size; idx++) {
mem_type_free(iov[idx].buffer);

}
}

static int buffer_malloc(ucp_dt_iov_t *iov)
{

size_t idx;

for (idx = 0; idx < iov_cnt; idx++) {
iov[idx].length = test_string_length;
iov[idx].buffer = mem_type_malloc(iov[idx].length);
if (iov[idx].buffer == NULL) {

buffer_free(iov, idx);
return -1;

}
}

return 0;
}

int fill_buffer(ucp_dt_iov_t *iov)
{

int ret = 0;
size_t idx;

for (idx = 0; idx < iov_cnt; idx++) {
ret = generate_test_string(iov[idx].buffer, iov[idx].length);
if (ret != 0) {

break;
}

}
CHKERR_ACTION(ret != 0, "generate test string", return -1;);
return 0;

}

static void common_cb(void *user_data, const char *type_str)
{

test_req_t *ctx;

if (user_data == NULL) {
fprintf(stderr, "user_data passed to %s mustn’t be NULL\n", type_str);
return;

}

ctx = user_data;
ctx->complete = 1;

}

static void tag_recv_cb(void *request, ucs_status_t status,
const ucp_tag_recv_info_t *info, void *user_data)

{
common_cb(user_data, "tag_recv_cb");

}

static void stream_recv_cb(void *request, ucs_status_t status, size_t length,
void *user_data)

{
common_cb(user_data, "stream_recv_cb");

}

static void am_recv_cb(void *request, ucs_status_t status, size_t length,
void *user_data)

{
common_cb(user_data, "am_recv_cb");

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

256 Examples

}

static void send_cb(void *request, ucs_status_t status, void *user_data)
{

common_cb(user_data, "send_cb");
}

static void err_cb(void *arg, ucp_ep_h ep, ucs_status_t status)
{

printf("error handling callback was invoked with status %d (%s)\n",
status, ucs_status_string(status));

connection_closed = 1;
}

void set_sock_addr(const char *address_str, struct sockaddr_storage *saddr)
{

struct sockaddr_in *sa_in;
struct sockaddr_in6 *sa_in6;

/* The server will listen on INADDR_ANY */
memset(saddr, 0, sizeof(*saddr));

switch (ai_family) {
case AF_INET:

sa_in = (struct sockaddr_in*)saddr;
if (address_str != NULL) {

inet_pton(AF_INET, address_str, &sa_in->sin_addr);
} else {

sa_in->sin_addr.s_addr = INADDR_ANY;
}
sa_in->sin_family = AF_INET;
sa_in->sin_port = htons(server_port);
break;

case AF_INET6:
sa_in6 = (struct sockaddr_in6*)saddr;
if (address_str != NULL) {

inet_pton(AF_INET6, address_str, &sa_in6->sin6_addr);
} else {

sa_in6->sin6_addr = in6addr_any;
}
sa_in6->sin6_family = AF_INET6;
sa_in6->sin6_port = htons(server_port);
break;

default:
fprintf(stderr, "Invalid address family");
break;

}
}

static ucs_status_t start_client(ucp_worker_h ucp_worker,
const char *address_str, ucp_ep_h *client_ep)

{
ucp_ep_params_t ep_params;
struct sockaddr_storage connect_addr;
ucs_status_t status;

set_sock_addr(address_str, &connect_addr);

/*
* Endpoint field mask bits:

* UCP_EP_PARAM_FIELD_FLAGS - Use the value of the ’flags’ field.

* UCP_EP_PARAM_FIELD_SOCK_ADDR - Use a remote sockaddr to connect

* to the remote peer.

* UCP_EP_PARAM_FIELD_ERR_HANDLING_MODE - Error handling mode - this flag

* is temporarily required since the

* endpoint will be closed with

* UCP_EP_CLOSE_MODE_FORCE which

* requires this mode.

* Once UCP_EP_CLOSE_MODE_FORCE is

* removed, the error handling mode

* will be removed.

*/
ep_params.field_mask = UCP_EP_PARAM_FIELD_FLAGS |

UCP_EP_PARAM_FIELD_SOCK_ADDR |
UCP_EP_PARAM_FIELD_ERR_HANDLER |
UCP_EP_PARAM_FIELD_ERR_HANDLING_MODE;

ep_params.err_mode = UCP_ERR_HANDLING_MODE_PEER;
ep_params.err_handler.cb = err_cb;
ep_params.err_handler.arg = NULL;
ep_params.flags = UCP_EP_PARAMS_FLAGS_CLIENT_SERVER;
ep_params.sockaddr.addr = (struct sockaddr*)&connect_addr;
ep_params.sockaddr.addrlen = sizeof(connect_addr);

status = ucp_ep_create(ucp_worker, &ep_params, client_ep);
if (status != UCS_OK) {

fprintf(stderr, "failed to connect to %s (%s)\n", address_str,
ucs_status_string(status));

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

8.2 ucp_client_server.c 257

}

return status;
}

static void print_iov(const ucp_dt_iov_t *iov)
{

char *msg = alloca(test_string_length);
size_t idx;

for (idx = 0; idx < iov_cnt; idx++) {
/* In case of Non-System memory */
mem_type_memcpy(msg, iov[idx].buffer, test_string_length);
printf("%s.\n", msg);

}
}

static
void print_result(int is_server, const ucp_dt_iov_t *iov, int current_iter)
{

if (is_server) {
printf("Server: iteration #%d\n", (current_iter + 1));
printf("UCX data message was received\n");
printf("\n\n----- UCP TEST SUCCESS -------\n\n");

} else {
printf("Client: iteration #%d\n", (current_iter + 1));
printf("\n\n------------------------------\n\n");

}

print_iov(iov);

printf("\n\n------------------------------\n\n");
}

static ucs_status_t request_wait(ucp_worker_h ucp_worker, void *request,
test_req_t *ctx)

{
ucs_status_t status;

/* if operation was completed immediately */
if (request == NULL) {

return UCS_OK;
}

if (UCS_PTR_IS_ERR(request)) {
return UCS_PTR_STATUS(request);

}

while (ctx->complete == 0) {
ucp_worker_progress(ucp_worker);

}
status = ucp_request_check_status(request);

ucp_request_free(request);

return status;
}

static int request_finalize(ucp_worker_h ucp_worker, test_req_t *request,
test_req_t *ctx, int is_server, ucp_dt_iov_t *iov,
int current_iter)

{
int ret = 0;
ucs_status_t status;

status = request_wait(ucp_worker, request, ctx);
if (status != UCS_OK) {

fprintf(stderr, "unable to %s UCX message (%s)\n",
is_server ? "receive": "send", ucs_status_string(status));

ret = -1;
goto release_iov;

}

/* Print the output of the first, last and every PRINT_INTERVAL iteration */
if ((current_iter == 0) || (current_iter == (num_iterations - 1)) ||

!((current_iter + 1) % (PRINT_INTERVAL))) {
print_result(is_server, iov, current_iter);

}

release_iov:
buffer_free(iov, iov_cnt);
return ret;

}

static int
fill_request_param(ucp_dt_iov_t *iov, int is_client,

void **msg, size_t *msg_length,

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

258 Examples

test_req_t *ctx, ucp_request_param_t *param)
{

CHKERR_ACTION(buffer_malloc(iov) != 0, "allocate memory", return -1;);

if (is_client && (fill_buffer(iov) != 0)) {
buffer_free(iov, iov_cnt);
return -1;

}

*msg = (iov_cnt == 1) ? iov[0].buffer : iov;

*msg_length = (iov_cnt == 1) ? iov[0].length : iov_cnt;

ctx->complete = 0;
param->op_attr_mask = UCP_OP_ATTR_FIELD_CALLBACK |

UCP_OP_ATTR_FIELD_DATATYPE |
UCP_OP_ATTR_FIELD_USER_DATA;

param->datatype = (iov_cnt == 1) ? ucp_dt_make_contig(1) :
UCP_DATATYPE_IOV;

param->user_data = ctx;

return 0;
}

static int send_recv_stream(ucp_worker_h ucp_worker, ucp_ep_h ep, int is_server,
int current_iter)

{
ucp_dt_iov_t *iov = alloca(iov_cnt * sizeof(ucp_dt_iov_t));
ucp_request_param_t param;
test_req_t *request;
size_t msg_length;
void *msg;
test_req_t ctx;

memset(iov, 0, iov_cnt * sizeof(*iov));

if (fill_request_param(iov, !is_server, &msg, &msg_length,
&ctx, ¶m) != 0) {

return -1;
}

if (!is_server) {
/* Client sends a message to the server using the stream API */
param.cb.send = send_cb;
request = ucp_stream_send_nbx(ep, msg, msg_length, ¶m);

} else {
/* Server receives a message from the client using the stream API */
param.op_attr_mask |= UCP_OP_ATTR_FIELD_FLAGS;
param.flags = UCP_STREAM_RECV_FLAG_WAITALL;
param.cb.recv_stream = stream_recv_cb;
request = ucp_stream_recv_nbx(ep, msg, msg_length,

&msg_length, ¶m);
}

return request_finalize(ucp_worker, request, &ctx, is_server, iov,
current_iter);

}

static int send_recv_tag(ucp_worker_h ucp_worker, ucp_ep_h ep, int is_server,
int current_iter)

{
ucp_dt_iov_t *iov = alloca(iov_cnt * sizeof(ucp_dt_iov_t));
ucp_request_param_t param;
void *request;
size_t msg_length;
void *msg;
test_req_t ctx;

memset(iov, 0, iov_cnt * sizeof(*iov));

if (fill_request_param(iov, !is_server, &msg, &msg_length,
&ctx, ¶m) != 0) {

return -1;
}

if (!is_server) {
/* Client sends a message to the server using the Tag-Matching API */
param.cb.send = send_cb;
request = ucp_tag_send_nbx(ep, msg, msg_length, TAG, ¶m);

} else {
/* Server receives a message from the client using the Tag-Matching API */
param.cb.recv = tag_recv_cb;
request = ucp_tag_recv_nbx(ucp_worker, msg, msg_length, TAG, 0,

¶m);
}

return request_finalize(ucp_worker, request, &ctx, is_server, iov,
current_iter);

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

8.2 ucp_client_server.c 259

}

ucs_status_t ucp_am_data_cb(void *arg, const void *header, size_t header_length,
void *data, size_t length,
const ucp_am_recv_param_t *param)

{
ucp_dt_iov_t *iov;
size_t idx;
size_t offset;

if (length != iov_cnt * test_string_length) {
fprintf(stderr, "received wrong data length %ld (expected %ld)",

length, iov_cnt * test_string_length);
return UCS_OK;

}

if (header_length != 0) {
fprintf(stderr, "received unexpected header, length %ld", header_length);

}

am_data_desc.complete++;

if (param->recv_attr & UCP_AM_RECV_ATTR_FLAG_RNDV) {
/* Rendezvous request arrived, data contains an internal UCX descriptor,

* which has to be passed to ucp_am_recv_data_nbx function to confirm

* data transfer.

*/
am_data_desc.is_rndv = 1;
am_data_desc.desc = data;
return UCS_INPROGRESS;

}

/* Message delivered with eager protocol, data should be available

* immediately

*/
am_data_desc.is_rndv = 0;

iov = am_data_desc.recv_buf;
offset = 0;
for (idx = 0; idx < iov_cnt; idx++) {

mem_type_memcpy(iov[idx].buffer, UCS_PTR_BYTE_OFFSET(data, offset),
iov[idx].length);

offset += iov[idx].length;
}

return UCS_OK;
}

static int send_recv_am(ucp_worker_h ucp_worker, ucp_ep_h ep, int is_server,
int current_iter)

{
static int last = 0;
ucp_dt_iov_t *iov = alloca(iov_cnt * sizeof(ucp_dt_iov_t));
test_req_t *request;
ucp_request_param_t params;
size_t msg_length;
void *msg;
test_req_t ctx;

memset(iov, 0, iov_cnt * sizeof(*iov));

if (fill_request_param(iov, !is_server, &msg, &msg_length,
&ctx, ¶ms) != 0) {

return -1;
}

if (is_server) {
am_data_desc.recv_buf = iov;

/* waiting for AM callback has called */
while (last == am_data_desc.complete) {

ucp_worker_progress(ucp_worker);
}

last++;

if (am_data_desc.is_rndv) {
/* Rendezvous request has arrived, need to invoke receive operation

* to confirm data transfer from the sender to the "recv_message"

* buffer. */
params.op_attr_mask |= UCP_OP_ATTR_FLAG_NO_IMM_CMPL;
params.cb.recv_am = am_recv_cb;
request = ucp_am_recv_data_nbx(ucp_worker,

am_data_desc.desc,
msg, msg_length,
¶ms);

} else {

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

260 Examples

/* Data has arrived eagerly and is ready for use, no need to

* initiate receive operation. */
request = NULL;

}
} else {

/* Client sends a message to the server using the AM API */
params.cb.send = (ucp_send_nbx_callback_t)send_cb;
request = ucp_am_send_nbx(ep, TEST_AM_ID, NULL, 0ul, msg,

msg_length, ¶ms);
}

return request_finalize(ucp_worker, request, &ctx, is_server, iov,
current_iter);

}

static void usage()
{

fprintf(stderr, "Usage: ucp_client_server [parameters]\n");
fprintf(stderr, "UCP client-server example utility\n");
fprintf(stderr, "\nParameters are:\n");
fprintf(stderr, " -a Set IP address of the server "

"(required for client and should not be specified "
"for the server)\n");

fprintf(stderr, " -l Set IP address where server listens "
"(If not specified, server uses INADDR_ANY; "
"Irrelevant at client)\n");

fprintf(stderr, " -p Port number to listen/connect to (default = %d). "
"0 on the server side means select a random port and print it\n",
DEFAULT_PORT);

fprintf(stderr, " -c Communication type for the client and server. "
" Valid values are:\n"
" ’stream’ : Stream API\n"
" ’tag’ : Tag API\n"
" ’am’ : AM API\n"
" If not specified, %s API will be used.\n", COMM_TYPE_DEFAULT);

fprintf(stderr, " -i Number of iterations to run. Client and server must "
"have the same value. (default = %d).\n",
num_iterations);

fprintf(stderr, " -v Number of buffers in a single data "
"transfer function call. (default = %ld).\n",
iov_cnt);

print_common_help();
fprintf(stderr, "\n");

}

static parse_cmd_status_t parse_cmd(int argc, char *const argv[],
char **server_addr, char **listen_addr,
send_recv_type_t *send_recv_type)

{
int c = 0;
int port;

while ((c = getopt(argc, argv, "a:l:p:c:6i:s:v:m:h")) != -1) {
switch (c) {
case ’a’:

*server_addr = optarg;
break;

case ’c’:
if (!strcasecmp(optarg, "stream")) {

*send_recv_type = CLIENT_SERVER_SEND_RECV_STREAM;
} else if (!strcasecmp(optarg, "tag")) {

*send_recv_type = CLIENT_SERVER_SEND_RECV_TAG;
} else if (!strcasecmp(optarg, "am")) {

*send_recv_type = CLIENT_SERVER_SEND_RECV_AM;
} else {

fprintf(stderr, "Wrong communication type %s. "
"Using %s as default\n", optarg, COMM_TYPE_DEFAULT);

*send_recv_type = CLIENT_SERVER_SEND_RECV_DEFAULT;
}
break;

case ’l’:

*listen_addr = optarg;
break;

case ’p’:
port = atoi(optarg);
if ((port < 0) || (port > UINT16_MAX)) {

fprintf(stderr, "Wrong server port number %d\n", port);
return PARSE_CMD_STATUS_ERROR;

}
server_port = port;
break;

case ’6’:
ai_family = AF_INET6;
break;

case ’i’:
num_iterations = atoi(optarg);
break;

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

8.2 ucp_client_server.c 261

case ’s’:
test_string_length = atol(optarg);
if (test_string_length < 0) {

fprintf(stderr, "Wrong string size %ld\n", test_string_length);
return PARSE_CMD_STATUS_ERROR;

}
break;

case ’v’:
iov_cnt = atol(optarg);
if (iov_cnt <= 0) {

fprintf(stderr, "Wrong iov count %ld\n", iov_cnt);
return PARSE_CMD_STATUS_ERROR;

}
break;

case ’m’:
test_mem_type = parse_mem_type(optarg);
if (test_mem_type == UCS_MEMORY_TYPE_LAST) {

return PARSE_CMD_STATUS_ERROR;
}
break;

case ’h’:
usage();
return PARSE_CMD_STATUS_PRINT_HELP;

default:
usage();
return PARSE_CMD_STATUS_ERROR;

}
}

return PARSE_CMD_STATUS_OK;
}

static char* sockaddr_get_ip_str(const struct sockaddr_storage *sock_addr,
char *ip_str, size_t max_size)

{
struct sockaddr_in addr_in;
struct sockaddr_in6 addr_in6;

switch (sock_addr->ss_family) {
case AF_INET:

memcpy(&addr_in, sock_addr, sizeof(struct sockaddr_in));
inet_ntop(AF_INET, &addr_in.sin_addr, ip_str, max_size);
return ip_str;

case AF_INET6:
memcpy(&addr_in6, sock_addr, sizeof(struct sockaddr_in6));
inet_ntop(AF_INET6, &addr_in6.sin6_addr, ip_str, max_size);
return ip_str;

default:
return "Invalid address family";

}
}

static char* sockaddr_get_port_str(const struct sockaddr_storage *sock_addr,
char *port_str, size_t max_size)

{
struct sockaddr_in addr_in;
struct sockaddr_in6 addr_in6;

switch (sock_addr->ss_family) {
case AF_INET:

memcpy(&addr_in, sock_addr, sizeof(struct sockaddr_in));
snprintf(port_str, max_size, "%d", ntohs(addr_in.sin_port));
return port_str;

case AF_INET6:
memcpy(&addr_in6, sock_addr, sizeof(struct sockaddr_in6));
snprintf(port_str, max_size, "%d", ntohs(addr_in6.sin6_port));
return port_str;

default:
return "Invalid address family";

}
}

static int client_server_communication(ucp_worker_h worker, ucp_ep_h ep,
send_recv_type_t send_recv_type,
int is_server, int current_iter)

{
int ret;

switch (send_recv_type) {
case CLIENT_SERVER_SEND_RECV_STREAM:

/* Client-Server communication via Stream API */
ret = send_recv_stream(worker, ep, is_server, current_iter);
break;

case CLIENT_SERVER_SEND_RECV_TAG:
/* Client-Server communication via Tag-Matching API */
ret = send_recv_tag(worker, ep, is_server, current_iter);
break;

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

262 Examples

case CLIENT_SERVER_SEND_RECV_AM:
/* Client-Server communication via AM API. */
ret = send_recv_am(worker, ep, is_server, current_iter);
break;

default:
fprintf(stderr, "unknown send-recv type %d\n", send_recv_type);
return -1;

}

return ret;
}

static int init_worker(ucp_context_h ucp_context, ucp_worker_h *ucp_worker)
{

ucp_worker_params_t worker_params;
ucs_status_t status;
int ret = 0;

memset(&worker_params, 0, sizeof(worker_params));

worker_params.field_mask = UCP_WORKER_PARAM_FIELD_THREAD_MODE;
worker_params.thread_mode = UCS_THREAD_MODE_SINGLE;

status = ucp_worker_create(ucp_context, &worker_params, ucp_worker);
if (status != UCS_OK) {

fprintf(stderr, "failed to ucp_worker_create (%s)\n", ucs_status_string(status));
ret = -1;

}

return ret;
}

static void server_conn_handle_cb(ucp_conn_request_h conn_request, void *arg)
{

ucx_server_ctx_t *context = arg;
ucp_conn_request_attr_t attr;
char ip_str[IP_STRING_LEN];
char port_str[PORT_STRING_LEN];
ucs_status_t status;

attr.field_mask = UCP_CONN_REQUEST_ATTR_FIELD_CLIENT_ADDR;
status = ucp_conn_request_query(conn_request, &attr);
if (status == UCS_OK) {

printf("Server received a connection request from client at address %s:%s\n",
sockaddr_get_ip_str(&attr.client_address, ip_str, sizeof(ip_str)),
sockaddr_get_port_str(&attr.client_address, port_str, sizeof(port_str)));

} else if (status != UCS_ERR_UNSUPPORTED) {
fprintf(stderr, "failed to query the connection request (%s)\n",

ucs_status_string(status));
}

if (context->conn_request == NULL) {
context->conn_request = conn_request;

} else {
/* The server is already handling a connection request from a client,

* reject this new one */
printf("Rejecting a connection request. "

"Only one client at a time is supported.\n");
status = ucp_listener_reject(context->listener, conn_request);
if (status != UCS_OK) {

fprintf(stderr, "server failed to reject a connection request: (%s)\n",
ucs_status_string(status));

}
}

}

static ucs_status_t server_create_ep(ucp_worker_h data_worker,
ucp_conn_request_h conn_request,
ucp_ep_h *server_ep)

{
ucp_ep_params_t ep_params;
ucs_status_t status;

/* Server creates an ep to the client on the data worker.

* This is not the worker the listener was created on.

* The client side should have initiated the connection, leading

* to this ep’s creation */
ep_params.field_mask = UCP_EP_PARAM_FIELD_ERR_HANDLER |

UCP_EP_PARAM_FIELD_CONN_REQUEST;
ep_params.conn_request = conn_request;
ep_params.err_handler.cb = err_cb;
ep_params.err_handler.arg = NULL;

status = ucp_ep_create(data_worker, &ep_params, server_ep);
if (status != UCS_OK) {

fprintf(stderr, "failed to create an endpoint on the server: (%s)\n",
ucs_status_string(status));

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

8.2 ucp_client_server.c 263

}

return status;
}

static ucs_status_t
start_server(ucp_worker_h ucp_worker, ucx_server_ctx_t *context,

ucp_listener_h *listener_p, const char *address_str)
{

struct sockaddr_storage listen_addr;
ucp_listener_params_t params;
ucp_listener_attr_t attr;
ucs_status_t status;
char ip_str[IP_STRING_LEN];
char port_str[PORT_STRING_LEN];

set_sock_addr(address_str, &listen_addr);

params.field_mask = UCP_LISTENER_PARAM_FIELD_SOCK_ADDR |
UCP_LISTENER_PARAM_FIELD_CONN_HANDLER;

params.sockaddr.addr = (const struct sockaddr*)&listen_addr;
params.sockaddr.addrlen = sizeof(listen_addr);
params.conn_handler.cb = server_conn_handle_cb;
params.conn_handler.arg = context;

/* Create a listener on the server side to listen on the given address.*/
status = ucp_listener_create(ucp_worker, ¶ms, listener_p);
if (status != UCS_OK) {

fprintf(stderr, "failed to listen (%s)\n", ucs_status_string(status));
goto out;

}

/* Query the created listener to get the port it is listening on. */
attr.field_mask = UCP_LISTENER_ATTR_FIELD_SOCKADDR;
status = ucp_listener_query(*listener_p, &attr);
if (status != UCS_OK) {

fprintf(stderr, "failed to query the listener (%s)\n",
ucs_status_string(status));

ucp_listener_destroy(*listener_p);
goto out;

}

fprintf(stderr, "server is listening on IP %s port %s\n",
sockaddr_get_ip_str(&attr.sockaddr, ip_str, IP_STRING_LEN),
sockaddr_get_port_str(&attr.sockaddr, port_str, PORT_STRING_LEN));

printf("Waiting for connection...\n");

out:
return status;

}

ucs_status_t register_am_recv_callback(ucp_worker_h worker)
{

ucp_am_handler_param_t param;

param.field_mask = UCP_AM_HANDLER_PARAM_FIELD_ID |
UCP_AM_HANDLER_PARAM_FIELD_CB |
UCP_AM_HANDLER_PARAM_FIELD_ARG;

param.id = TEST_AM_ID;
param.cb = ucp_am_data_cb;
param.arg = worker; /* not used in our callback */

return ucp_worker_set_am_recv_handler(worker, ¶m);
}

static int client_server_do_work(ucp_worker_h ucp_worker, ucp_ep_h ep,
send_recv_type_t send_recv_type, int is_server)

{
int i, ret = 0;
ucs_status_t status;

connection_closed = 0;

for (i = 0; i < num_iterations; i++) {
ret = client_server_communication(ucp_worker, ep, send_recv_type,

is_server, i);
if (ret != 0) {

fprintf(stderr, "%s failed on iteration #%d\n",
(is_server ? "server": "client"), i + 1);

goto out;
}

}

/* Register recv callback on the client side to receive FIN message */
if (!is_server && (send_recv_type == CLIENT_SERVER_SEND_RECV_AM)) {

status = register_am_recv_callback(ucp_worker);

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

264 Examples

if (status != UCS_OK) {
ret = -1;
goto out;

}
}

/* FIN message in reverse direction to acknowledge delivery */
ret = client_server_communication(ucp_worker, ep, send_recv_type,

!is_server, i + 1);
if (ret != 0) {

fprintf(stderr, "%s failed on FIN message\n",
(is_server ? "server": "client"));

goto out;
}

printf("%s FIN message\n", is_server ? "sent" : "received");

/* Server waits until the client closed the connection after receiving FIN */
while (is_server && !connection_closed) {

ucp_worker_progress(ucp_worker);
}

out:
return ret;

}

static int run_server(ucp_context_h ucp_context, ucp_worker_h ucp_worker,
char *listen_addr, send_recv_type_t send_recv_type)

{
ucx_server_ctx_t context;
ucp_worker_h ucp_data_worker;
ucp_ep_h server_ep;
ucs_status_t status;
int ret;

/* Create a data worker (to be used for data exchange between the server

* and the client after the connection between them was established) */
ret = init_worker(ucp_context, &ucp_data_worker);
if (ret != 0) {

goto err;
}

if (send_recv_type == CLIENT_SERVER_SEND_RECV_AM) {
status = register_am_recv_callback(ucp_data_worker);
if (status != UCS_OK) {

ret = -1;
goto err_worker;

}
}

/* Initialize the server’s context. */
context.conn_request = NULL;

/* Create a listener on the worker created at first. The ’connection

* worker’ - used for connection establishment between client and server.

* This listener will stay open for listening to incoming connection

* requests from the client */
status = start_server(ucp_worker, &context, &context.listener, listen_addr);
if (status != UCS_OK) {

ret = -1;
goto err_worker;

}

/* Server is always up listening */
while (1) {

/* Wait for the server to receive a connection request from the client.

* If there are multiple clients for which the server’s connection request

* callback is invoked, i.e. several clients are trying to connect in

* parallel, the server will handle only the first one and reject the rest */
while (context.conn_request == NULL) {

ucp_worker_progress(ucp_worker);
}

/* Server creates an ep to the client on the data worker.

* This is not the worker the listener was created on.

* The client side should have initiated the connection, leading

* to this ep’s creation */
status = server_create_ep(ucp_data_worker, context.conn_request,

&server_ep);
if (status != UCS_OK) {

ret = -1;
goto err_listener;

}

/* The server waits for all the iterations to complete before moving on

* to the next client */
ret = client_server_do_work(ucp_data_worker, server_ep, send_recv_type,

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

8.2 ucp_client_server.c 265

1);
if (ret != 0) {

goto err_ep;
}

/* Close the endpoint to the client */
ep_close(ucp_data_worker, server_ep, UCP_EP_CLOSE_FLAG_FORCE);

/* Reinitialize the server’s context to be used for the next client */
context.conn_request = NULL;

printf("Waiting for connection...\n");
}

err_ep:
ep_close(ucp_data_worker, server_ep, UCP_EP_CLOSE_FLAG_FORCE);

err_listener:
ucp_listener_destroy(context.listener);

err_worker:
ucp_worker_destroy(ucp_data_worker);

err:
return ret;

}

static int run_client(ucp_worker_h ucp_worker, char *server_addr,
send_recv_type_t send_recv_type)

{
ucp_ep_h client_ep;
ucs_status_t status;
int ret;

status = start_client(ucp_worker, server_addr, &client_ep);
if (status != UCS_OK) {

fprintf(stderr, "failed to start client (%s)\n", ucs_status_string(status));
ret = -1;
goto out;

}

ret = client_server_do_work(ucp_worker, client_ep, send_recv_type, 0);

/* Close the endpoint to the server */
ep_close(ucp_worker, client_ep, UCP_EP_CLOSE_FLAG_FORCE);

out:
return ret;

}

static int init_context(ucp_context_h *ucp_context, ucp_worker_h *ucp_worker,
send_recv_type_t send_recv_type)

{
/* UCP objects */
ucp_params_t ucp_params;
ucs_status_t status;
int ret = 0;

memset(&ucp_params, 0, sizeof(ucp_params));

/* UCP initialization */
ucp_params.field_mask = UCP_PARAM_FIELD_FEATURES | UCP_PARAM_FIELD_NAME;
ucp_params.name = "client_server";

if (send_recv_type == CLIENT_SERVER_SEND_RECV_STREAM) {
ucp_params.features = UCP_FEATURE_STREAM;

} else if (send_recv_type == CLIENT_SERVER_SEND_RECV_TAG) {
ucp_params.features = UCP_FEATURE_TAG;

} else {
ucp_params.features = UCP_FEATURE_AM;

}

status = ucp_init(&ucp_params, NULL, ucp_context);
if (status != UCS_OK) {

fprintf(stderr, "failed to ucp_init (%s)\n", ucs_status_string(status));
ret = -1;
goto err;

}

ret = init_worker(*ucp_context, ucp_worker);
if (ret != 0) {

goto err_cleanup;
}

return ret;

err_cleanup:
ucp_cleanup(*ucp_context);

err:
return ret;

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

266 Examples

}

int main(int argc, char **argv)
{

send_recv_type_t send_recv_type = CLIENT_SERVER_SEND_RECV_DEFAULT;
char *server_addr = NULL;
char *listen_addr = NULL;
parse_cmd_status_t parse_cmd_status;
int ret;

/* UCP objects */
ucp_context_h ucp_context;
ucp_worker_h ucp_worker;

parse_cmd_status = parse_cmd(argc, argv, &server_addr, &listen_addr,
&send_recv_type);

if (parse_cmd_status == PARSE_CMD_STATUS_PRINT_HELP) {
ret = 0;
goto err;

} else if (parse_cmd_status == PARSE_CMD_STATUS_ERROR) {
ret = -1;
goto err;

}

/* Initialize the UCX required objects */
ret = init_context(&ucp_context, &ucp_worker, send_recv_type);
if (ret != 0) {

goto err;
}

/* Client-Server initialization */
if (server_addr == NULL) {

/* Server side */
ret = run_server(ucp_context, ucp_worker, listen_addr, send_recv_type);

} else {
/* Client side */
ret = run_client(ucp_worker, server_addr, send_recv_type);

}

ucp_worker_destroy(ucp_worker);
ucp_cleanup(ucp_context);

err:
return ret;

}

8.3 uct_hello_world.c

UCT hello world client / server example utility.

#include "hello_world_util.h"
#include <limits.h>

#include <uct/api/uct.h>

#include <assert.h>
#include <inttypes.h>

typedef enum {
FUNC_AM_SHORT,
FUNC_AM_BCOPY,
FUNC_AM_ZCOPY

} func_am_t;

typedef struct {
int is_uct_desc;

} recv_desc_t;

typedef struct {
char *server_name;
uint16_t server_port;
sa_family_t ai_family;
func_am_t func_am_type;
const char *dev_name;
const char *tl_name;
long test_strlen;

} cmd_args_t;

typedef struct {
uct_iface_attr_t iface_attr; /* Interface attributes: capabilities and limitations */
uct_iface_h iface; /* Communication interface context */
uct_md_attr_t md_attr; /* Memory domain attributes: capabilities and limitations */

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

8.3 uct_hello_world.c 267

uct_md_h md; /* Memory domain */
uct_worker_h worker; /* Workers represent allocated resources in a communication thread */

} iface_info_t;

/* Helper data type for am_short */
typedef struct {

uint64_t header;
char *payload;
size_t len;

} am_short_args_t;

/* Helper data type for am_bcopy */
typedef struct {

char *data;
size_t len;

} am_bcopy_args_t;

/* Helper data type for am_zcopy */
typedef struct {

uct_completion_t uct_comp;
uct_md_h md;
uct_mem_h memh;

} zcopy_comp_t;

static void* desc_holder = NULL;

static char *func_am_t_str(func_am_t func_am_type)
{

switch (func_am_type) {
case FUNC_AM_SHORT:

return "uct_ep_am_short";
case FUNC_AM_BCOPY:

return "uct_ep_am_bcopy";
case FUNC_AM_ZCOPY:

return "uct_ep_am_zcopy";
}
return NULL;

}

static size_t func_am_max_size(func_am_t func_am_type,
const uct_iface_attr_t *attr)

{
switch (func_am_type) {
case FUNC_AM_SHORT:

return attr->cap.am.max_short;
case FUNC_AM_BCOPY:

return attr->cap.am.max_bcopy;
case FUNC_AM_ZCOPY:

return attr->cap.am.max_zcopy;
}
return 0;

}

/* Helper function for am_short */
void am_short_params_pack(char *buf, size_t len, am_short_args_t *args)
{

args->header = *(uint64_t *)buf;
if (len > sizeof(args->header)) {

args->payload = (buf + sizeof(args->header));
args->len = len - sizeof(args->header);

} else {
args->payload = NULL;
args->len = 0;

}
}

ucs_status_t do_am_short(iface_info_t *if_info, uct_ep_h ep, uint8_t id,
const cmd_args_t *cmd_args, char *buf)

{
ucs_status_t status;
am_short_args_t send_args;

am_short_params_pack(buf, cmd_args->test_strlen, &send_args);

do {
/* Send active message to remote endpoint */
status = uct_ep_am_short(ep, id, send_args.header, send_args.payload,

send_args.len);
uct_worker_progress(if_info->worker);

} while (status == UCS_ERR_NO_RESOURCE);

return status;
}

/* Pack callback for am_bcopy */
size_t am_bcopy_data_pack_cb(void *dest, void *arg)
{

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

268 Examples

am_bcopy_args_t *bc_args = arg;
mem_type_memcpy(dest, bc_args->data, bc_args->len);
return bc_args->len;

}

ucs_status_t do_am_bcopy(iface_info_t *if_info, uct_ep_h ep, uint8_t id,
const cmd_args_t *cmd_args, char *buf)

{
am_bcopy_args_t args;
ssize_t len;

args.data = buf;
args.len = cmd_args->test_strlen;

/* Send active message to remote endpoint */
do {

len = uct_ep_am_bcopy(ep, id, am_bcopy_data_pack_cb, &args, 0);
uct_worker_progress(if_info->worker);

} while (len == UCS_ERR_NO_RESOURCE);
/* Negative len is an error code */
return (len >= 0) ? UCS_OK : (ucs_status_t)len;

}

/* Completion callback for am_zcopy */
void zcopy_completion_cb(uct_completion_t *self)
{

zcopy_comp_t *comp = (zcopy_comp_t *)self;
assert((comp->uct_comp.count == 0) && (self->status == UCS_OK));
if (comp->memh != UCT_MEM_HANDLE_NULL) {

uct_md_mem_dereg(comp->md, comp->memh);
}
desc_holder = (void *)0xDEADBEEF;

}

ucs_status_t do_am_zcopy(iface_info_t *if_info, uct_ep_h ep, uint8_t id,
const cmd_args_t *cmd_args, char *buf)

{
ucs_status_t status = UCS_OK;
uct_mem_h memh;
uct_iov_t iov;
zcopy_comp_t comp;

if (if_info->md_attr.cap.flags & UCT_MD_FLAG_NEED_MEMH) {
status = uct_md_mem_reg(if_info->md, buf, cmd_args->test_strlen,

UCT_MD_MEM_ACCESS_RMA, &memh);
} else {

memh = UCT_MEM_HANDLE_NULL;
}

iov.buffer = buf;
iov.length = cmd_args->test_strlen;
iov.memh = memh;
iov.stride = 0;
iov.count = 1;

comp.uct_comp.func = zcopy_completion_cb;
comp.uct_comp.count = 1;
comp.uct_comp.status = UCS_OK;
comp.md = if_info->md;
comp.memh = memh;

if (status == UCS_OK) {
do {

status = uct_ep_am_zcopy(ep, id, NULL, 0, &iov, 1, 0,
(uct_completion_t *)&comp);

uct_worker_progress(if_info->worker);
} while (status == UCS_ERR_NO_RESOURCE);

if (status == UCS_INPROGRESS) {
while (!desc_holder) {

/* Explicitly progress outstanding active message request */
uct_worker_progress(if_info->worker);

}
status = UCS_OK;

}
}
return status;

}
static void print_strings(const char *label, const char *local_str,

const char *remote_str, size_t length)
{

fprintf(stdout, "\n\n----- UCT TEST SUCCESS ----\n\n");
fprintf(stdout, "[%s] %s sent %s (%" PRIu64 " bytes)", label, local_str,

(length != 0) ? remote_str : "<none>", length);
fprintf(stdout, "\n\n---------------------------\n");
fflush(stdout);

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

8.3 uct_hello_world.c 269

}

/* Callback to handle receive active message */
static ucs_status_t hello_world(void *arg, void *data, size_t length,

unsigned flags)
{

func_am_t func_am_type = *(func_am_t *)arg;
recv_desc_t *rdesc;

print_strings("callback", func_am_t_str(func_am_type), data, length);

if (flags & UCT_CB_PARAM_FLAG_DESC) {
rdesc = (recv_desc_t *)data - 1;
/* Hold descriptor to release later and return UCS_INPROGRESS */
rdesc->is_uct_desc = 1;
desc_holder = rdesc;
return UCS_INPROGRESS;

}

/* We need to copy-out data and return UCS_OK if want to use the data

* outside the callback */
rdesc = malloc(sizeof(*rdesc) + length);
CHKERR_ACTION(rdesc == NULL, "allocate memory\n", return UCS_ERR_NO_MEMORY);
rdesc->is_uct_desc = 0;
memcpy(rdesc + 1, data, length);
desc_holder = rdesc;
return UCS_OK;

}

/* Init the transport by its name */
static ucs_status_t init_iface(char *dev_name, char *tl_name,

func_am_t func_am_type,
iface_info_t *iface_p)

{
ucs_status_t status;
uct_iface_config_t *config; /* Defines interface configuration options */
uct_iface_params_t params;

params.field_mask = UCT_IFACE_PARAM_FIELD_OPEN_MODE |
UCT_IFACE_PARAM_FIELD_DEVICE |
UCT_IFACE_PARAM_FIELD_STATS_ROOT |
UCT_IFACE_PARAM_FIELD_RX_HEADROOM |
UCT_IFACE_PARAM_FIELD_CPU_MASK;

params.open_mode = UCT_IFACE_OPEN_MODE_DEVICE;
params.mode.device.tl_name = tl_name;
params.mode.device.dev_name = dev_name;
params.stats_root = NULL;
params.rx_headroom = sizeof(recv_desc_t);

UCS_CPU_ZERO(¶ms.cpu_mask);
/* Read transport-specific interface configuration */
status = uct_md_iface_config_read(iface_p->md, tl_name, NULL, NULL, &config);
CHKERR_JUMP(UCS_OK != status, "setup iface_config", error_ret);

/* Open communication interface */
assert(iface_p->iface == NULL);
status = uct_iface_open(iface_p->md, iface_p->worker, ¶ms, config,

&iface_p->iface);
uct_config_release(config);
CHKERR_JUMP(UCS_OK != status, "open temporary interface", error_ret);

/* Enable progress on the interface */
uct_iface_progress_enable(iface_p->iface,

UCT_PROGRESS_SEND | UCT_PROGRESS_RECV);

/* Get interface attributes */
status = uct_iface_query(iface_p->iface, &iface_p->iface_attr);
CHKERR_JUMP(UCS_OK != status, "query iface", error_iface);

/* Check if current device and transport support required active messages */
if ((func_am_type == FUNC_AM_SHORT) &&

(iface_p->iface_attr.cap.flags & UCT_IFACE_FLAG_AM_SHORT)) {
if (test_mem_type != UCS_MEMORY_TYPE_CUDA) {

return UCS_OK;
} else {

fprintf(stderr, "AM short protocol doesn’t support CUDA memory\n");
}

}

if ((func_am_type == FUNC_AM_BCOPY) &&
(iface_p->iface_attr.cap.flags & UCT_IFACE_FLAG_AM_BCOPY)) {
return UCS_OK;

}

if ((func_am_type == FUNC_AM_ZCOPY) &&
(iface_p->iface_attr.cap.flags & UCT_IFACE_FLAG_AM_ZCOPY)) {
return UCS_OK;

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

270 Examples

}

error_iface:
uct_iface_close(iface_p->iface);
iface_p->iface = NULL;

error_ret:
return UCS_ERR_UNSUPPORTED;

}

/* Device and transport to be used are determined by minimum latency */
static ucs_status_t dev_tl_lookup(const cmd_args_t *cmd_args,

iface_info_t *iface_p)
{

uct_tl_resource_desc_t *tl_resources = NULL; /* Communication resource descriptor */
unsigned num_tl_resources = 0; /* Number of transport resources resource objects
created */

uct_component_h *components;
unsigned num_components;
unsigned cmpt_index;
uct_component_attr_t component_attr;
unsigned md_index;
unsigned tl_index;
uct_md_config_t *md_config;
ucs_status_t status;

status = uct_query_components(&components, &num_components);
CHKERR_JUMP(UCS_OK != status, "query for components", error_ret);

for (cmpt_index = 0; cmpt_index < num_components; ++cmpt_index) {

component_attr.field_mask = UCT_COMPONENT_ATTR_FIELD_MD_RESOURCE_COUNT;
status = uct_component_query(components[cmpt_index], &component_attr);
CHKERR_JUMP(UCS_OK != status, "query component attributes",

release_component_list);

component_attr.field_mask = UCT_COMPONENT_ATTR_FIELD_MD_RESOURCES;
component_attr.md_resources = alloca(sizeof(*component_attr.md_resources) *

component_attr.md_resource_count);
status = uct_component_query(components[cmpt_index], &component_attr);
CHKERR_JUMP(UCS_OK != status, "query for memory domain resources",

release_component_list);

iface_p->iface = NULL;

/* Iterate through memory domain resources */
for (md_index = 0; md_index < component_attr.md_resource_count; ++md_index) {

status = uct_md_config_read(components[cmpt_index], NULL, NULL,
&md_config);

CHKERR_JUMP(UCS_OK != status, "read MD config",
release_component_list);

status = uct_md_open(components[cmpt_index],
component_attr.md_resources[md_index].md_name,
md_config, &iface_p->md);

uct_config_release(md_config);
CHKERR_JUMP(UCS_OK != status, "open memory domains",

release_component_list);

status = uct_md_query(iface_p->md, &iface_p->md_attr);
CHKERR_JUMP(UCS_OK != status, "query iface",

close_md);

status = uct_md_query_tl_resources(iface_p->md, &tl_resources,
&num_tl_resources);

CHKERR_JUMP(UCS_OK != status, "query transport resources", close_md);

/* Go through each available transport and find the proper name */
for (tl_index = 0; tl_index < num_tl_resources; ++tl_index) {

if (!strcmp(cmd_args->dev_name, tl_resources[tl_index].dev_name) &&
!strcmp(cmd_args->tl_name, tl_resources[tl_index].tl_name)) {
if ((cmd_args->func_am_type == FUNC_AM_ZCOPY) &&

!(iface_p->md_attr.cap.reg_mem_types &
UCS_BIT(test_mem_type))) {

fprintf(stderr, "Unsupported memory type %s by "
UCT_TL_RESOURCE_DESC_FMT" on %s MD\n",
ucs_memory_type_names[test_mem_type],
UCT_TL_RESOURCE_DESC_ARG(&tl_resources[tl_index]),
component_attr.md_resources[md_index].md_name);

status = UCS_ERR_UNSUPPORTED;
break;

}

status = init_iface(tl_resources[tl_index].dev_name,
tl_resources[tl_index].tl_name,
cmd_args->func_am_type, iface_p);

if (status != UCS_OK) {
break;

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

8.3 uct_hello_world.c 271

}

fprintf(stdout, "Using "UCT_TL_RESOURCE_DESC_FMT"\n",
UCT_TL_RESOURCE_DESC_ARG(&tl_resources[tl_index]));

goto release_tl_resources;
}

}

release_tl_resources:
uct_release_tl_resource_list(tl_resources);
if ((status == UCS_OK) &&

(tl_index < num_tl_resources)) {
goto release_component_list;

}

tl_resources = NULL;
num_tl_resources = 0;
uct_md_close(iface_p->md);

}
}

fprintf(stderr, "No supported (dev/tl) found (%s/%s)\n",
cmd_args->dev_name, cmd_args->tl_name);

status = UCS_ERR_UNSUPPORTED;

release_component_list:
uct_release_component_list(components);

error_ret:
return status;

close_md:
uct_md_close(iface_p->md);
goto release_component_list;

}

static void print_usage()
{

const char func_template[] =
" -%c Select \"%s\" function to send the message%s\n";

fprintf(stderr, "Usage: uct_hello_world [parameters]\n");
fprintf(stderr, "UCT hello world client/server example utility\n");
fprintf(stderr, "\nParameters are:\n");
fprintf(stderr, func_template, ’i’, func_am_t_str(FUNC_AM_SHORT),

" (default)");
fprintf(stderr, func_template, ’b’, func_am_t_str(FUNC_AM_BCOPY), "");
fprintf(stderr, func_template, ’z’, func_am_t_str(FUNC_AM_ZCOPY), "");
fprintf(stderr, " -d Select device name\n");
fprintf(stderr, " -t Select transport layer\n");
fprintf(stderr, " -n <name> Set node name or IP address "

"of the server (required for client and should be ignored "
"for server)\n");

print_common_help();
fprintf(stderr, "\nExample:\n");
fprintf(stderr, " Server: uct_hello_world -d eth0 -t tcp\n");
fprintf(stderr, " Client: uct_hello_world -d eth0 -t tcp -n localhost\n");

}

static parse_cmd_status_t
parse_cmd(int argc, char *const argv[], cmd_args_t *args)
{

int c = 0, idx = 0;

assert(args);
memset(args, 0, sizeof(*args));

/* Defaults */
args->server_port = 13337;
args->ai_family = AF_INET;
args->func_am_type = FUNC_AM_SHORT;
args->test_strlen = 16;

while ((c = getopt(argc, argv, "6ibzd:t:n:p:s:m:h")) != -1) {
switch (c) {
case ’i’:

args->func_am_type = FUNC_AM_SHORT;
break;

case ’b’:
args->func_am_type = FUNC_AM_BCOPY;
break;

case ’z’:
args->func_am_type = FUNC_AM_ZCOPY;
break;

case ’d’:
args->dev_name = optarg;
break;

case ’t’:
args->tl_name = optarg;

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

272 Examples

break;
case ’n’:

args->server_name = optarg;
break;

case ’6’:
args->ai_family = AF_INET6;
break;

case ’p’:
args->server_port = atoi(optarg);
if (args->server_port <= 0) {

fprintf(stderr, "Wrong server port number %d\n",
args->server_port);

return PARSE_CMD_STATUS_ERROR;
}
break;

case ’s’:
args->test_strlen = atol(optarg);
if (args->test_strlen < 0) {

fprintf(stderr, "Wrong string size %ld\n", args->test_strlen);
return PARSE_CMD_STATUS_ERROR;

}
break;

case ’m’:
test_mem_type = parse_mem_type(optarg);
if (test_mem_type == UCS_MEMORY_TYPE_LAST) {

return PARSE_CMD_STATUS_ERROR;
}
break;

case ’h’:
print_usage();
return PARSE_CMD_STATUS_PRINT_HELP;

default:
print_usage();
return PARSE_CMD_STATUS_ERROR;

}
}
fprintf(stdout, "INFO: UCT_HELLO_WORLD AM function = %s server = %s port = %d\n",

func_am_t_str(args->func_am_type), args->server_name,
args->server_port);

for (idx = optind; idx < argc; idx++) {
fprintf(stderr, "WARNING: Non-option argument %s\n", argv[idx]);

}

if (args->dev_name == NULL) {
fprintf(stderr, "WARNING: device is not set\n");
print_usage();
return PARSE_CMD_STATUS_ERROR;

}

if (args->tl_name == NULL) {
fprintf(stderr, "WARNING: transport layer is not set\n");
print_usage();
return PARSE_CMD_STATUS_ERROR;

}

return PARSE_CMD_STATUS_OK;
}

/* The caller is responsible to free *rbuf */
int sendrecv(int sock, const void *sbuf, size_t slen, void **rbuf)
{

int ret = 0;
size_t rlen = 0;

*rbuf = NULL;

ret = send(sock, &slen, sizeof(slen), 0);
if ((ret < 0) || (ret != sizeof(slen))) {

fprintf(stderr, "failed to send buffer length\n");
return -1;

}

ret = send(sock, sbuf, slen, 0);
if (ret != (int)slen) {

fprintf(stderr, "failed to send buffer, return value %d\n", ret);
return -1;

}

ret = recv(sock, &rlen, sizeof(rlen), MSG_WAITALL);
if ((ret != sizeof(rlen)) || (rlen > (SIZE_MAX / 2))) {

fprintf(stderr,
"failed to receive device address length, return value %d\n",
ret);

return -1;
}

*rbuf = calloc(1, rlen);

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

8.3 uct_hello_world.c 273

if (!*rbuf) {
fprintf(stderr, "failed to allocate receive buffer\n");
return -1;

}

ret = recv(sock, *rbuf, rlen, MSG_WAITALL);
if (ret != (int)rlen) {

fprintf(stderr, "failed to receive device address, return value %d\n",
ret);

return -1;
}

return 0;
}

static void progress_worker(void *arg)
{

uct_worker_progress((uct_worker_h)arg);
}

int main(int argc, char **argv)
{

uct_device_addr_t *peer_dev = NULL;
uct_iface_addr_t *peer_iface = NULL;
uct_ep_addr_t *own_ep = NULL;
uct_ep_addr_t *peer_ep = NULL;
uint8_t id = 0;
int oob_sock = -1; /* OOB connection socket */
ucs_status_t status = UCS_OK; /* status codes for UCS */
uct_device_addr_t *own_dev;
uct_iface_addr_t *own_iface;
uct_ep_h ep; /* Remote endpoint */
ucs_async_context_t *async; /* Async event context manages

times and fd notifications */
cmd_args_t cmd_args;
iface_info_t if_info;
uct_ep_params_t ep_params;
int res;
parse_cmd_status_t parse_cmd_status;

/* Parse the command line */
parse_cmd_status = parse_cmd(argc, argv, &cmd_args);
if (parse_cmd_status == PARSE_CMD_STATUS_PRINT_HELP) {

status = UCS_OK;
goto out;

} else if (parse_cmd_status == PARSE_CMD_STATUS_ERROR) {
status = UCS_ERR_INVALID_PARAM;
goto out;

}

/* Initialize context

* It is better to use different contexts for different workers */
status = ucs_async_context_create(UCS_ASYNC_MODE_THREAD_SPINLOCK, &async);
CHKERR_JUMP(UCS_OK != status, "init async context", out);

/* Create a worker object */
status = uct_worker_create(async, UCS_THREAD_MODE_SINGLE, &if_info.worker);
CHKERR_JUMP(UCS_OK != status, "create worker", out_cleanup_async);

/* Search for the desired transport */
status = dev_tl_lookup(&cmd_args, &if_info);
CHKERR_JUMP(UCS_OK != status, "find supported device and transport",

out_destroy_worker);

/* Set active message handler */
status = uct_iface_set_am_handler(if_info.iface, id, hello_world,

&cmd_args.func_am_type, 0);
CHKERR_JUMP(UCS_OK != status, "set callback", out_destroy_iface);

own_dev = (uct_device_addr_t*)calloc(1, if_info.iface_attr.device_addr_len);
CHKERR_JUMP(NULL == own_dev, "allocate memory for dev addr",

out_destroy_iface);

own_iface = (uct_iface_addr_t*)calloc(1, if_info.iface_attr.iface_addr_len);
CHKERR_JUMP(NULL == own_iface, "allocate memory for if addr",

out_free_dev_addrs);

oob_sock = connect_common(cmd_args.server_name, cmd_args.server_port,
cmd_args.ai_family);

CHKERR_ACTION(oob_sock < 0, "OOB connect",
status = UCS_ERR_IO_ERROR; goto out_close_oob_sock);

/* Get device address */
if (if_info.iface_attr.device_addr_len > 0) {

status = uct_iface_get_device_address(if_info.iface, own_dev);

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

274 Examples

CHKERR_JUMP(UCS_OK != status, "get device address", out_free_if_addrs);

res = sendrecv(oob_sock, own_dev, if_info.iface_attr.device_addr_len,
(void**)&peer_dev);

CHKERR_ACTION(0 != res, "device exchange", status = UCS_ERR_NO_MESSAGE;
goto out_close_oob_sock);

}

/* Get interface address */
if (if_info.iface_attr.iface_addr_len > 0) {

status = uct_iface_get_address(if_info.iface, own_iface);
CHKERR_JUMP(UCS_OK != status, "get interface address",

out_close_oob_sock);

status = (ucs_status_t)sendrecv(oob_sock, own_iface, if_info.iface_attr.iface_addr_len,
(void **)&peer_iface);

CHKERR_JUMP(0 != status, "ifaces exchange", out_close_oob_sock);
}

status = (ucs_status_t)uct_iface_is_reachable(if_info.iface, peer_dev,
peer_iface);

CHKERR_JUMP(0 == status, "reach the peer", out_close_oob_sock);

ep_params.field_mask = UCT_EP_PARAM_FIELD_IFACE;
ep_params.iface = if_info.iface;
if (if_info.iface_attr.cap.flags & UCT_IFACE_FLAG_CONNECT_TO_EP) {

own_ep = (uct_ep_addr_t*)calloc(1, if_info.iface_attr.ep_addr_len);
CHKERR_ACTION(NULL == own_ep, "allocate memory for ep addrs",

status = UCS_ERR_NO_MEMORY; goto out_close_oob_sock);

/* Create new endpoint */
status = uct_ep_create(&ep_params, &ep);
CHKERR_JUMP(UCS_OK != status, "create endpoint", out_free_ep_addrs);

/* Get endpoint address */
status = uct_ep_get_address(ep, own_ep);
CHKERR_JUMP(UCS_OK != status, "get endpoint address", out_free_ep);

status = (ucs_status_t)sendrecv(oob_sock, own_ep, if_info.iface_attr.ep_addr_len,
(void **)&peer_ep);

CHKERR_JUMP(0 != status, "EPs exchange", out_free_ep);

/* Connect endpoint to a remote endpoint */
status = uct_ep_connect_to_ep(ep, peer_dev, peer_ep);
if (barrier(oob_sock, progress_worker, if_info.worker)) {

status = UCS_ERR_IO_ERROR;
goto out_free_ep;

}
} else if (if_info.iface_attr.cap.flags & UCT_IFACE_FLAG_CONNECT_TO_IFACE) {

/* Create an endpoint which is connected to a remote interface */
ep_params.field_mask |= UCT_EP_PARAM_FIELD_DEV_ADDR |

UCT_EP_PARAM_FIELD_IFACE_ADDR;
ep_params.dev_addr = peer_dev;
ep_params.iface_addr = peer_iface;
status = uct_ep_create(&ep_params, &ep);
CHKERR_JUMP(UCS_OK != status, "create endpoint", out_free_ep_addrs);

} else {
status = UCS_ERR_UNSUPPORTED;
goto out_free_ep_addrs;

}

if (cmd_args.test_strlen > func_am_max_size(cmd_args.func_am_type, &if_info.iface_attr)) {
status = UCS_ERR_UNSUPPORTED;
fprintf(stderr, "Test string is too long: %ld, max supported: %lu\n",

cmd_args.test_strlen,
func_am_max_size(cmd_args.func_am_type, &if_info.iface_attr));

goto out_free_ep;
}

if (cmd_args.server_name) {
char *str = (char *)mem_type_malloc(cmd_args.test_strlen);
CHKERR_ACTION(str == NULL, "allocate memory",

status = UCS_ERR_NO_MEMORY; goto out_free_ep);
res = generate_test_string(str, cmd_args.test_strlen);
CHKERR_ACTION(res < 0, "generate test string",

status = UCS_ERR_NO_MEMORY; goto out_free_ep);

/* Send active message to remote endpoint */
if (cmd_args.func_am_type == FUNC_AM_SHORT) {

status = do_am_short(&if_info, ep, id, &cmd_args, str);
} else if (cmd_args.func_am_type == FUNC_AM_BCOPY) {

status = do_am_bcopy(&if_info, ep, id, &cmd_args, str);
} else if (cmd_args.func_am_type == FUNC_AM_ZCOPY) {

status = do_am_zcopy(&if_info, ep, id, &cmd_args, str);
}

mem_type_free(str);

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

8.3 uct_hello_world.c 275

CHKERR_JUMP(UCS_OK != status, "send active msg", out_free_ep);
} else {

recv_desc_t *rdesc;

while (desc_holder == NULL) {
/* Explicitly progress any outstanding active message requests */
uct_worker_progress(if_info.worker);

}

rdesc = desc_holder;
print_strings("main", func_am_t_str(cmd_args.func_am_type),

(char *)(rdesc + 1), cmd_args.test_strlen);

if (rdesc->is_uct_desc) {
/* Release descriptor because callback returns UCS_INPROGRESS */
uct_iface_release_desc(rdesc);

} else {
free(rdesc);

}
}

if (barrier(oob_sock, progress_worker, if_info.worker)) {
status = UCS_ERR_IO_ERROR;

}

out_free_ep:
uct_ep_destroy(ep);

out_free_ep_addrs:
free(own_ep);
free(peer_ep);

out_close_oob_sock:
close(oob_sock);

out_free_if_addrs:
free(own_iface);
free(peer_iface);

out_free_dev_addrs:
free(own_dev);
free(peer_dev);

out_destroy_iface:
uct_iface_close(if_info.iface);
uct_md_close(if_info.md);

out_destroy_worker:
uct_worker_destroy(if_info.worker);

out_cleanup_async:
ucs_async_context_destroy(async);

out:
return (status == UCS_ERR_UNSUPPORTED) ? UCS_OK : status;

}

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

276 Examples

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

Index

completed_cb
uct_tag_context, 242

Conventions and Notations, 7

Deprecated List, 9
Design, 5

finish
UCP Data type routines, 136

Introduction, 3

pack
UCP Data type routines, 135

packed_size
UCP Data type routines, 135

Preface, 1
priv

uct_tag_context, 243

rndv_cb
uct_tag_context, 242

start_pack
UCP Data type routines, 134

start_unpack
UCP Data type routines, 135

tag_consumed_cb
uct_tag_context, 242

UCP Application Context, 13
UCP_ATTR_FIELD_MEMORY_TYPES, 20
UCP_ATTR_FIELD_NAME, 20
UCP_ATTR_FIELD_REQUEST_SIZE, 20
UCP_ATTR_FIELD_THREAD_MODE, 20
ucp_cleanup, 21
ucp_context_attr_field, 20
ucp_context_attr_t, 18
ucp_context_h, 18
ucp_context_print_info, 22
ucp_context_query, 22
UCP_ENTITY_NAME_MAX, 18
ucp_feature, 19
UCP_FEATURE_AM, 19
UCP_FEATURE_AMO32, 19
UCP_FEATURE_AMO64, 19
UCP_FEATURE_EXPORTED_MEMH, 19
UCP_FEATURE_RMA, 19
UCP_FEATURE_STREAM, 19
UCP_FEATURE_TAG, 19

UCP_FEATURE_WAKEUP, 19
ucp_get_version, 20
ucp_get_version_string, 21
ucp_init, 21
ucp_lib_attr_field, 19
UCP_LIB_ATTR_FIELD_MAX_THREAD_LEVEL,

20
ucp_lib_attr_t, 18
ucp_lib_query, 20
UCP_PARAM_FIELD_ESTIMATED_NUM_EPS,

19
UCP_PARAM_FIELD_ESTIMATED_NUM_PPN,

19
UCP_PARAM_FIELD_FEATURES, 19
UCP_PARAM_FIELD_MT_WORKERS_SHARED,

19
UCP_PARAM_FIELD_NAME, 19
UCP_PARAM_FIELD_REQUEST_CLEANUP, 19
UCP_PARAM_FIELD_REQUEST_INIT, 19
UCP_PARAM_FIELD_REQUEST_SIZE, 19
UCP_PARAM_FIELD_TAG_SENDER_MASK, 19
ucp_params_field, 19
ucp_request_cleanup_callback_t, 18
ucp_request_init_callback_t, 18
ucp_tag_recv_info_t, 18

UCP Communication routines, 81
ucp_am_data_release, 94
ucp_am_handler_param_field, 91
UCP_AM_HANDLER_PARAM_FIELD_ARG, 91
UCP_AM_HANDLER_PARAM_FIELD_CB, 91
UCP_AM_HANDLER_PARAM_FIELD_FLAGS, 91
UCP_AM_HANDLER_PARAM_FIELD_ID, 91
UCP_AM_RECV_ATTR_FIELD_REPLY_EP, 90
UCP_AM_RECV_ATTR_FLAG_DATA, 91
UCP_AM_RECV_ATTR_FLAG_RNDV, 91
ucp_am_recv_attr_t, 90
ucp_am_recv_data_nbx, 93
ucp_am_recv_data_nbx_callback_t, 88
ucp_am_send_nb, 114
ucp_am_send_nbx, 92
ucp_atomic_add32, 108
ucp_atomic_add64, 108
ucp_atomic_cswap32, 112
ucp_atomic_cswap64, 113
ucp_atomic_fadd32, 109
ucp_atomic_fadd64, 110
ucp_atomic_fetch_nb, 124
UCP_ATOMIC_FETCH_OP_CSWAP, 92
UCP_ATOMIC_FETCH_OP_FADD, 92

278 INDEX

UCP_ATOMIC_FETCH_OP_FAND, 92
UCP_ATOMIC_FETCH_OP_FOR, 92
UCP_ATOMIC_FETCH_OP_FXOR, 92
UCP_ATOMIC_FETCH_OP_LAST, 92
UCP_ATOMIC_FETCH_OP_SWAP, 92
ucp_atomic_fetch_op_t, 91
UCP_ATOMIC_OP_ADD, 89
UCP_ATOMIC_OP_AND, 89
UCP_ATOMIC_OP_CSWAP, 89
UCP_ATOMIC_OP_LAST, 89
ucp_atomic_op_nbx, 103
UCP_ATOMIC_OP_OR, 89
UCP_ATOMIC_OP_SWAP, 89
ucp_atomic_op_t, 89
UCP_ATOMIC_OP_XOR, 89
ucp_atomic_post, 123
UCP_ATOMIC_POST_OP_ADD, 91
UCP_ATOMIC_POST_OP_AND, 91
UCP_ATOMIC_POST_OP_LAST, 91
UCP_ATOMIC_POST_OP_OR, 91
ucp_atomic_post_op_t, 91
UCP_ATOMIC_POST_OP_XOR, 91
ucp_atomic_swap32, 111
ucp_atomic_swap64, 111
ucp_datatype_t, 86
ucp_err_handler_cb_t, 87
ucp_err_handler_t, 87
ucp_get, 107
ucp_get_nb, 123
ucp_get_nbi, 122
ucp_get_nbx, 102
UCP_OP_ATTR_FIELD_CALLBACK, 90
UCP_OP_ATTR_FIELD_DATATYPE, 90
UCP_OP_ATTR_FIELD_FLAGS, 90
UCP_OP_ATTR_FIELD_MEMH, 90
UCP_OP_ATTR_FIELD_MEMORY_TYPE, 90
UCP_OP_ATTR_FIELD_RECV_INFO, 90
UCP_OP_ATTR_FIELD_REPLY_BUFFER, 90
UCP_OP_ATTR_FIELD_REQUEST, 90
UCP_OP_ATTR_FIELD_USER_DATA, 90
UCP_OP_ATTR_FLAG_FAST_CMPL, 90
UCP_OP_ATTR_FLAG_FORCE_IMM_CMPL, 90
UCP_OP_ATTR_FLAG_MULTI_SEND, 90
UCP_OP_ATTR_FLAG_NO_IMM_CMPL, 90
ucp_op_attr_t, 89
ucp_put, 106
ucp_put_nb, 121
ucp_put_nbi, 121
ucp_put_nbx, 101
ucp_req_attr_field, 90
ucp_request_alloc, 106
UCP_REQUEST_ATTR_FIELD_INFO_STRING,

90
UCP_REQUEST_ATTR_FIELD_INFO_STRING_SIZE,

90
UCP_REQUEST_ATTR_FIELD_MEM_TYPE, 90
UCP_REQUEST_ATTR_FIELD_STATUS, 90
ucp_request_cancel, 105

ucp_request_check_status, 104
ucp_request_free, 106
ucp_request_is_completed, 106
ucp_request_query, 92
ucp_send_callback_t, 86
ucp_send_nbx_callback_t, 86
ucp_stream_data_release, 105
ucp_stream_recv_callback_t, 87
ucp_stream_recv_data_nb, 97
UCP_STREAM_RECV_FLAG_WAITALL, 89
ucp_stream_recv_flags_t, 89
ucp_stream_recv_nb, 115
ucp_stream_recv_nbx, 96
ucp_stream_recv_nbx_callback_t, 87
ucp_stream_recv_request_test, 105
ucp_stream_send_nb, 114
ucp_stream_send_nbx, 94
ucp_tag_message_h, 86
ucp_tag_msg_recv_nb, 120
ucp_tag_msg_recv_nbx, 99
ucp_tag_probe_nb, 98
ucp_tag_recv_callback_t, 88
ucp_tag_recv_nb, 119
ucp_tag_recv_nbr, 119
ucp_tag_recv_nbx, 98
ucp_tag_recv_nbx_callback_t, 88
ucp_tag_recv_request_test, 104
ucp_tag_send_nb, 116
ucp_tag_send_nbr, 117
ucp_tag_send_nbx, 95
ucp_tag_send_sync_nb, 118
ucp_tag_send_sync_nbx, 96
ucp_tag_t, 86

UCP Configuration, 125
ucp_config_modify, 128
ucp_config_print, 129
ucp_config_read, 128
ucp_config_release, 128
ucp_config_t, 128
ucp_params_t, 127

UCP Data type routines, 129
finish, 136
pack, 135
packed_size, 135
start_pack, 134
start_unpack, 135
ucp_datatype_attr_field, 133
UCP_DATATYPE_ATTR_FIELD_BUFFER, 133
UCP_DATATYPE_ATTR_FIELD_COUNT, 133
UCP_DATATYPE_ATTR_FIELD_PACKED_SIZE,

133
ucp_datatype_attr_t, 132
UCP_DATATYPE_CLASS_MASK, 133
UCP_DATATYPE_CONTIG, 133
UCP_DATATYPE_GENERIC, 133
UCP_DATATYPE_IOV, 133
UCP_DATATYPE_SHIFT, 133
UCP_DATATYPE_STRIDED, 133

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

INDEX 279

ucp_dt_create_generic, 133
ucp_dt_destroy, 134
ucp_dt_iov_t, 132
ucp_dt_make_contig, 131
ucp_dt_make_iov, 132
ucp_dt_query, 134
ucp_dt_type, 133
ucp_generic_dt_ops_t, 132
unpack, 136

UCP Endpoint, 65
ucp_am_callback_t, 71
ucp_am_recv_callback_t, 72
UCP_CB_PARAM_FLAG_DATA, 74
ucp_cb_param_flags, 74
ucp_conn_request_h, 71
ucp_disconnect_nb, 79
ucp_ep_attr_field, 74
UCP_EP_ATTR_FIELD_LOCAL_SOCKADDR, 75
UCP_EP_ATTR_FIELD_NAME, 75
UCP_EP_ATTR_FIELD_REMOTE_SOCKADDR,

75
UCP_EP_ATTR_FIELD_TRANSPORTS, 75
UCP_EP_ATTR_FIELD_USER_DATA, 75
ucp_ep_attr_t, 71
UCP_EP_CLOSE_FLAG_FORCE, 74
ucp_ep_close_flags_t, 73
ucp_ep_close_mode, 75
UCP_EP_CLOSE_MODE_FLUSH, 75
UCP_EP_CLOSE_MODE_FORCE, 75
ucp_ep_close_nb, 80
ucp_ep_close_nbx, 76
ucp_ep_create, 76
ucp_ep_destroy, 79
ucp_ep_evaluate_perf, 78
ucp_ep_flush, 79
ucp_ep_flush_nb, 81
ucp_ep_flush_nbx, 77
ucp_ep_h, 71
ucp_ep_modify_nb, 79
UCP_EP_PARAM_FIELD_CONN_REQUEST, 73
UCP_EP_PARAM_FIELD_ERR_HANDLER, 73
UCP_EP_PARAM_FIELD_ERR_HANDLING_MODE,

73
UCP_EP_PARAM_FIELD_FLAGS, 73
UCP_EP_PARAM_FIELD_LOCAL_SOCK_ADDR,

73
UCP_EP_PARAM_FIELD_NAME, 73
UCP_EP_PARAM_FIELD_REMOTE_ADDRESS,

73
UCP_EP_PARAM_FIELD_SOCK_ADDR, 73
UCP_EP_PARAM_FIELD_USER_DATA, 73
ucp_ep_params_field, 72
UCP_EP_PARAMS_FLAGS_CLIENT_SERVER,

73
ucp_ep_params_flags_field, 73
UCP_EP_PARAMS_FLAGS_NO_LOOPBACK, 73
UCP_EP_PARAMS_FLAGS_SEND_CLIENT_ID,

73

ucp_ep_params_t, 72
ucp_ep_perf_attr_field, 74
UCP_EP_PERF_ATTR_FIELD_ESTIMATED_TIME,

74
ucp_ep_perf_attr_field_t, 70
ucp_ep_perf_param_field, 74
UCP_EP_PERF_PARAM_FIELD_MESSAGE_SIZE,

74
ucp_ep_perf_param_field_t, 70
ucp_ep_print_info, 77
ucp_ep_query, 78
UCP_ERR_HANDLING_MODE_NONE, 75
UCP_ERR_HANDLING_MODE_PEER, 76
ucp_err_handling_mode_t, 75
ucp_request_release, 78
ucp_request_test, 79
ucp_stream_poll_ep_t, 71

UCP Memory routines, 45
ucp_ep_rkey_unpack, 59
UCP_MADV_NORMAL, 52
UCP_MADV_WILLNEED, 53
ucp_mem_advice, 52
ucp_mem_advice_t, 50
ucp_mem_advise, 57
UCP_MEM_ADVISE_PARAM_FIELD_ADDRESS,

51
UCP_MEM_ADVISE_PARAM_FIELD_ADVICE, 52
UCP_MEM_ADVISE_PARAM_FIELD_LENGTH,

51
ucp_mem_advise_params_field, 51
ucp_mem_advise_params_t, 50
ucp_mem_attr_field, 53
UCP_MEM_ATTR_FIELD_ADDRESS, 53
UCP_MEM_ATTR_FIELD_LENGTH, 53
UCP_MEM_ATTR_FIELD_MEM_TYPE, 53
ucp_mem_attr_t, 51
ucp_mem_h, 51
ucp_mem_map, 54
UCP_MEM_MAP_ALLOCATE, 52
UCP_MEM_MAP_FIXED, 52
UCP_MEM_MAP_LOCK, 52
UCP_MEM_MAP_NONBLOCK, 52
UCP_MEM_MAP_PARAM_FIELD_ADDRESS, 51
UCP_MEM_MAP_PARAM_FIELD_EXPORTED_MEMH_BUFFER,

51
UCP_MEM_MAP_PARAM_FIELD_FLAGS, 51
UCP_MEM_MAP_PARAM_FIELD_LENGTH, 51
UCP_MEM_MAP_PARAM_FIELD_MEMORY_TYPE,

51
UCP_MEM_MAP_PARAM_FIELD_PROT, 51
ucp_mem_map_params_field, 51
ucp_mem_map_params_t, 50
UCP_MEM_MAP_PROT_LOCAL_READ, 52
UCP_MEM_MAP_PROT_LOCAL_WRITE, 52
UCP_MEM_MAP_PROT_REMOTE_READ, 52
UCP_MEM_MAP_PROT_REMOTE_WRITE, 52
UCP_MEM_MAP_SYMMETRIC_RKEY, 52
ucp_mem_print_info, 57

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

280 INDEX

ucp_mem_query, 57
ucp_mem_unmap, 56
ucp_memh_buffer_release, 58
ucp_memh_buffer_release_params_t, 50
ucp_memh_pack, 58
UCP_MEMH_PACK_FLAG_EXPORT, 53
ucp_memh_pack_flags, 53
UCP_MEMH_PACK_PARAM_FIELD_FLAGS, 53
ucp_memh_pack_params_field, 53
ucp_memh_pack_params_t, 50
ucp_rkey_buffer_release, 61
ucp_rkey_compare, 54
ucp_rkey_compare_params_t, 50
ucp_rkey_destroy, 60
ucp_rkey_h, 50
ucp_rkey_pack, 60
ucp_rkey_ptr, 59

UCP Wake-up routines, 61
ucp_worker_arm, 63
ucp_worker_get_efd, 62
ucp_worker_signal, 64
ucp_worker_wait, 62
ucp_worker_wait_mem, 63

UCP Worker, 23
ucp_address_t, 31
ucp_am_cb_flags, 35
UCP_AM_FLAG_PERSISTENT_DATA, 35
UCP_AM_FLAG_WHOLE_MSG, 35
ucp_am_handler_param_t, 31
ucp_am_recv_param_t, 31
UCP_AM_SEND_FLAG_COPY_HEADER, 36
UCP_AM_SEND_FLAG_EAGER, 36
UCP_AM_SEND_FLAG_REPLY, 36
UCP_AM_SEND_FLAG_RNDV, 36
UCP_AM_SEND_REPLY, 36
ucp_conn_request_attr_field, 35
UCP_CONN_REQUEST_ATTR_FIELD_CLIENT_ADDR,

35
UCP_CONN_REQUEST_ATTR_FIELD_CLIENT_ID,

35
ucp_conn_request_attr_t, 31
ucp_conn_request_query, 41
ucp_listener_accept_callback_t, 32
ucp_listener_accept_handler_t, 31
ucp_listener_attr_field, 35
UCP_LISTENER_ATTR_FIELD_SOCKADDR, 35
ucp_listener_attr_t, 31
ucp_listener_conn_callback_t, 32
ucp_listener_conn_handler_t, 32
ucp_listener_create, 40
ucp_listener_destroy, 40
ucp_listener_h, 31
UCP_LISTENER_PARAM_FIELD_ACCEPT_HANDLER,

34
UCP_LISTENER_PARAM_FIELD_CONN_HANDLER,

34
UCP_LISTENER_PARAM_FIELD_SOCK_ADDR,

34

ucp_listener_params_field, 34
ucp_listener_params_t, 31
ucp_listener_query, 40
ucp_listener_reject, 41
ucp_send_am_flags, 35
ucp_stream_worker_poll, 39
UCP_WAKEUP_AMO, 36
UCP_WAKEUP_EDGE, 36
ucp_wakeup_event_t, 33
ucp_wakeup_event_types, 36
UCP_WAKEUP_RMA, 36
UCP_WAKEUP_RX, 36
UCP_WAKEUP_TAG_RECV, 36
UCP_WAKEUP_TAG_SEND, 36
UCP_WAKEUP_TX, 36
ucp_worker_address_attr_field, 34
UCP_WORKER_ADDRESS_ATTR_FIELD_UID,

35
ucp_worker_address_attr_t, 31
UCP_WORKER_ADDRESS_FLAG_NET_ONLY,

34
ucp_worker_address_flags_t, 34
ucp_worker_address_query, 38
ucp_worker_attr_field, 34
UCP_WORKER_ATTR_FIELD_ADDRESS, 34
UCP_WORKER_ATTR_FIELD_ADDRESS_FLAGS,

34
UCP_WORKER_ATTR_FIELD_MAX_AM_HEADER,

34
UCP_WORKER_ATTR_FIELD_MAX_INFO_STRING,

34
UCP_WORKER_ATTR_FIELD_NAME, 34
UCP_WORKER_ATTR_FIELD_THREAD_MODE,

34
ucp_worker_attr_t, 30
ucp_worker_create, 36
ucp_worker_destroy, 37
ucp_worker_fence, 42
UCP_WORKER_FLAG_IGNORE_REQUEST_LEAK,

34
ucp_worker_flags_t, 33
ucp_worker_flush, 43
ucp_worker_flush_nb, 45
ucp_worker_flush_nbx, 43
ucp_worker_get_address, 44
ucp_worker_h, 32
UCP_WORKER_PARAM_FIELD_AM_ALIGNMENT,

33
UCP_WORKER_PARAM_FIELD_CLIENT_ID, 33
UCP_WORKER_PARAM_FIELD_CPU_MASK, 33
UCP_WORKER_PARAM_FIELD_EVENT_FD, 33
UCP_WORKER_PARAM_FIELD_EVENTS, 33
UCP_WORKER_PARAM_FIELD_FLAGS, 33
UCP_WORKER_PARAM_FIELD_NAME, 33
UCP_WORKER_PARAM_FIELD_THREAD_MODE,

33
UCP_WORKER_PARAM_FIELD_USER_DATA, 33
ucp_worker_params_field, 33

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

INDEX 281

ucp_worker_params_t, 30
ucp_worker_print_info, 38
ucp_worker_progress, 39
ucp_worker_query, 37
ucp_worker_release_address, 38
ucp_worker_set_am_handler, 44
ucp_worker_set_am_recv_handler, 42

ucp_address_t
UCP Worker, 31

ucp_am_callback_t
UCP Endpoint, 71

ucp_am_cb_flags
UCP Worker, 35

ucp_am_data_release
UCP Communication routines, 94

UCP_AM_FLAG_PERSISTENT_DATA
UCP Worker, 35

UCP_AM_FLAG_WHOLE_MSG
UCP Worker, 35

ucp_am_handler_param, 29
ucp_am_handler_param_field

UCP Communication routines, 91
UCP_AM_HANDLER_PARAM_FIELD_ARG

UCP Communication routines, 91
UCP_AM_HANDLER_PARAM_FIELD_CB

UCP Communication routines, 91
UCP_AM_HANDLER_PARAM_FIELD_FLAGS

UCP Communication routines, 91
UCP_AM_HANDLER_PARAM_FIELD_ID

UCP Communication routines, 91
ucp_am_handler_param_t

UCP Worker, 31
UCP_AM_RECV_ATTR_FIELD_REPLY_EP

UCP Communication routines, 90
UCP_AM_RECV_ATTR_FLAG_DATA

UCP Communication routines, 91
UCP_AM_RECV_ATTR_FLAG_RNDV

UCP Communication routines, 91
ucp_am_recv_attr_t

UCP Communication routines, 90
ucp_am_recv_callback_t

UCP Endpoint, 72
ucp_am_recv_data_nbx

UCP Communication routines, 93
ucp_am_recv_data_nbx_callback_t

UCP Communication routines, 88
ucp_am_recv_param, 30
ucp_am_recv_param_t

UCP Worker, 31
UCP_AM_SEND_FLAG_COPY_HEADER

UCP Worker, 36
UCP_AM_SEND_FLAG_EAGER

UCP Worker, 36
UCP_AM_SEND_FLAG_REPLY

UCP Worker, 36
UCP_AM_SEND_FLAG_RNDV

UCP Worker, 36
ucp_am_send_nb

UCP Communication routines, 114
ucp_am_send_nbx

UCP Communication routines, 92
UCP_AM_SEND_REPLY

UCP Worker, 36
ucp_atomic_add32

UCP Communication routines, 108
ucp_atomic_add64

UCP Communication routines, 108
ucp_atomic_cswap32

UCP Communication routines, 112
ucp_atomic_cswap64

UCP Communication routines, 113
ucp_atomic_fadd32

UCP Communication routines, 109
ucp_atomic_fadd64

UCP Communication routines, 110
ucp_atomic_fetch_nb

UCP Communication routines, 124
UCP_ATOMIC_FETCH_OP_CSWAP

UCP Communication routines, 92
UCP_ATOMIC_FETCH_OP_FADD

UCP Communication routines, 92
UCP_ATOMIC_FETCH_OP_FAND

UCP Communication routines, 92
UCP_ATOMIC_FETCH_OP_FOR

UCP Communication routines, 92
UCP_ATOMIC_FETCH_OP_FXOR

UCP Communication routines, 92
UCP_ATOMIC_FETCH_OP_LAST

UCP Communication routines, 92
UCP_ATOMIC_FETCH_OP_SWAP

UCP Communication routines, 92
ucp_atomic_fetch_op_t

UCP Communication routines, 91
UCP_ATOMIC_OP_ADD

UCP Communication routines, 89
UCP_ATOMIC_OP_AND

UCP Communication routines, 89
UCP_ATOMIC_OP_CSWAP

UCP Communication routines, 89
UCP_ATOMIC_OP_LAST

UCP Communication routines, 89
ucp_atomic_op_nbx

UCP Communication routines, 103
UCP_ATOMIC_OP_OR

UCP Communication routines, 89
UCP_ATOMIC_OP_SWAP

UCP Communication routines, 89
ucp_atomic_op_t

UCP Communication routines, 89
UCP_ATOMIC_OP_XOR

UCP Communication routines, 89
ucp_atomic_post

UCP Communication routines, 123
UCP_ATOMIC_POST_OP_ADD

UCP Communication routines, 91
UCP_ATOMIC_POST_OP_AND

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

282 INDEX

UCP Communication routines, 91
UCP_ATOMIC_POST_OP_LAST

UCP Communication routines, 91
UCP_ATOMIC_POST_OP_OR

UCP Communication routines, 91
ucp_atomic_post_op_t

UCP Communication routines, 91
UCP_ATOMIC_POST_OP_XOR

UCP Communication routines, 91
ucp_atomic_swap32

UCP Communication routines, 111
ucp_atomic_swap64

UCP Communication routines, 111
UCP_ATTR_FIELD_MEMORY_TYPES

UCP Application Context, 20
UCP_ATTR_FIELD_NAME

UCP Application Context, 20
UCP_ATTR_FIELD_REQUEST_SIZE

UCP Application Context, 20
UCP_ATTR_FIELD_THREAD_MODE

UCP Application Context, 20
UCP_CB_PARAM_FLAG_DATA

UCP Endpoint, 74
ucp_cb_param_flags

UCP Endpoint, 74
ucp_cleanup

UCP Application Context, 21
ucp_config_modify

UCP Configuration, 128
ucp_config_print

UCP Configuration, 129
ucp_config_read

UCP Configuration, 128
ucp_config_release

UCP Configuration, 128
ucp_config_t

UCP Configuration, 128
ucp_conn_request_attr, 28
ucp_conn_request_attr_field

UCP Worker, 35
UCP_CONN_REQUEST_ATTR_FIELD_CLIENT_ADDR

UCP Worker, 35
UCP_CONN_REQUEST_ATTR_FIELD_CLIENT_ID

UCP Worker, 35
ucp_conn_request_attr_t

UCP Worker, 31
ucp_conn_request_h

UCP Endpoint, 71
ucp_conn_request_query

UCP Worker, 41
ucp_context_attr, 15
ucp_context_attr_field

UCP Application Context, 20
ucp_context_attr_t

UCP Application Context, 18
ucp_context_h

UCP Application Context, 18
ucp_context_print_info

UCP Application Context, 22
ucp_context_query

UCP Application Context, 22
ucp_datatype_attr, 131
ucp_datatype_attr_field

UCP Data type routines, 133
UCP_DATATYPE_ATTR_FIELD_BUFFER

UCP Data type routines, 133
UCP_DATATYPE_ATTR_FIELD_COUNT

UCP Data type routines, 133
UCP_DATATYPE_ATTR_FIELD_PACKED_SIZE

UCP Data type routines, 133
ucp_datatype_attr_t

UCP Data type routines, 132
UCP_DATATYPE_CLASS_MASK

UCP Data type routines, 133
UCP_DATATYPE_CONTIG

UCP Data type routines, 133
UCP_DATATYPE_GENERIC

UCP Data type routines, 133
UCP_DATATYPE_IOV

UCP Data type routines, 133
UCP_DATATYPE_SHIFT

UCP Data type routines, 133
UCP_DATATYPE_STRIDED

UCP Data type routines, 133
ucp_datatype_t

UCP Communication routines, 86
ucp_disconnect_nb

UCP Endpoint, 79
ucp_dt_create_generic

UCP Data type routines, 133
ucp_dt_destroy

UCP Data type routines, 134
ucp_dt_iov, 131
ucp_dt_iov_t

UCP Data type routines, 132
ucp_dt_make_contig

UCP Data type routines, 131
ucp_dt_make_iov

UCP Data type routines, 132
ucp_dt_query

UCP Data type routines, 134
ucp_dt_type

UCP Data type routines, 133
UCP_ENTITY_NAME_MAX

UCP Application Context, 18
ucp_ep_attr, 68
ucp_ep_attr_field

UCP Endpoint, 74
UCP_EP_ATTR_FIELD_LOCAL_SOCKADDR

UCP Endpoint, 75
UCP_EP_ATTR_FIELD_NAME

UCP Endpoint, 75
UCP_EP_ATTR_FIELD_REMOTE_SOCKADDR

UCP Endpoint, 75
UCP_EP_ATTR_FIELD_TRANSPORTS

UCP Endpoint, 75

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

INDEX 283

UCP_EP_ATTR_FIELD_USER_DATA
UCP Endpoint, 75

ucp_ep_attr_t
UCP Endpoint, 71

UCP_EP_CLOSE_FLAG_FORCE
UCP Endpoint, 74

ucp_ep_close_flags_t
UCP Endpoint, 73

ucp_ep_close_mode
UCP Endpoint, 75

UCP_EP_CLOSE_MODE_FLUSH
UCP Endpoint, 75

UCP_EP_CLOSE_MODE_FORCE
UCP Endpoint, 75

ucp_ep_close_nb
UCP Endpoint, 80

ucp_ep_close_nbx
UCP Endpoint, 76

ucp_ep_create
UCP Endpoint, 76

ucp_ep_destroy
UCP Endpoint, 79

ucp_ep_evaluate_perf
UCP Endpoint, 78

ucp_ep_evaluate_perf_attr_t, 67
ucp_ep_evaluate_perf_param_t, 67
ucp_ep_flush

UCP Endpoint, 79
ucp_ep_flush_nb

UCP Endpoint, 81
ucp_ep_flush_nbx

UCP Endpoint, 77
ucp_ep_h

UCP Endpoint, 71
ucp_ep_modify_nb

UCP Endpoint, 79
UCP_EP_PARAM_FIELD_CONN_REQUEST

UCP Endpoint, 73
UCP_EP_PARAM_FIELD_ERR_HANDLER

UCP Endpoint, 73
UCP_EP_PARAM_FIELD_ERR_HANDLING_MODE

UCP Endpoint, 73
UCP_EP_PARAM_FIELD_FLAGS

UCP Endpoint, 73
UCP_EP_PARAM_FIELD_LOCAL_SOCK_ADDR

UCP Endpoint, 73
UCP_EP_PARAM_FIELD_NAME

UCP Endpoint, 73
UCP_EP_PARAM_FIELD_REMOTE_ADDRESS

UCP Endpoint, 73
UCP_EP_PARAM_FIELD_SOCK_ADDR

UCP Endpoint, 73
UCP_EP_PARAM_FIELD_USER_DATA

UCP Endpoint, 73
ucp_ep_params, 68
ucp_ep_params_field

UCP Endpoint, 72
UCP_EP_PARAMS_FLAGS_CLIENT_SERVER

UCP Endpoint, 73
ucp_ep_params_flags_field

UCP Endpoint, 73
UCP_EP_PARAMS_FLAGS_NO_LOOPBACK

UCP Endpoint, 73
UCP_EP_PARAMS_FLAGS_SEND_CLIENT_ID

UCP Endpoint, 73
ucp_ep_params_t

UCP Endpoint, 72
ucp_ep_perf_attr_field

UCP Endpoint, 74
UCP_EP_PERF_ATTR_FIELD_ESTIMATED_TIME

UCP Endpoint, 74
ucp_ep_perf_attr_field_t

UCP Endpoint, 70
ucp_ep_perf_param_field

UCP Endpoint, 74
UCP_EP_PERF_PARAM_FIELD_MESSAGE_SIZE

UCP Endpoint, 74
ucp_ep_perf_param_field_t

UCP Endpoint, 70
ucp_ep_print_info

UCP Endpoint, 77
ucp_ep_query

UCP Endpoint, 78
ucp_ep_rkey_unpack

UCP Memory routines, 59
ucp_err_handler, 86
ucp_err_handler_cb_t

UCP Communication routines, 87
ucp_err_handler_t

UCP Communication routines, 87
UCP_ERR_HANDLING_MODE_NONE

UCP Endpoint, 75
UCP_ERR_HANDLING_MODE_PEER

UCP Endpoint, 76
ucp_err_handling_mode_t

UCP Endpoint, 75
ucp_feature

UCP Application Context, 19
UCP_FEATURE_AM

UCP Application Context, 19
UCP_FEATURE_AMO32

UCP Application Context, 19
UCP_FEATURE_AMO64

UCP Application Context, 19
UCP_FEATURE_EXPORTED_MEMH

UCP Application Context, 19
UCP_FEATURE_RMA

UCP Application Context, 19
UCP_FEATURE_STREAM

UCP Application Context, 19
UCP_FEATURE_TAG

UCP Application Context, 19
UCP_FEATURE_WAKEUP

UCP Application Context, 19
ucp_generic_dt_ops, 241
ucp_generic_dt_ops_t

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

284 INDEX

UCP Data type routines, 132
ucp_get

UCP Communication routines, 107
ucp_get_nb

UCP Communication routines, 123
ucp_get_nbi

UCP Communication routines, 122
ucp_get_nbx

UCP Communication routines, 102
ucp_get_version

UCP Application Context, 20
ucp_get_version_string

UCP Application Context, 21
ucp_init

UCP Application Context, 21
ucp_lib_attr, 15
ucp_lib_attr_field

UCP Application Context, 19
UCP_LIB_ATTR_FIELD_MAX_THREAD_LEVEL

UCP Application Context, 20
ucp_lib_attr_t

UCP Application Context, 18
ucp_lib_query

UCP Application Context, 20
ucp_listener_accept_callback_t

UCP Worker, 32
ucp_listener_accept_handler, 30
ucp_listener_accept_handler_t

UCP Worker, 31
ucp_listener_attr, 28
ucp_listener_attr_field

UCP Worker, 35
UCP_LISTENER_ATTR_FIELD_SOCKADDR

UCP Worker, 35
ucp_listener_attr_t

UCP Worker, 31
ucp_listener_conn_callback_t

UCP Worker, 32
ucp_listener_conn_handler, 30
ucp_listener_conn_handler_t

UCP Worker, 32
ucp_listener_create

UCP Worker, 40
ucp_listener_destroy

UCP Worker, 40
ucp_listener_h

UCP Worker, 31
UCP_LISTENER_PARAM_FIELD_ACCEPT_HANDLER

UCP Worker, 34
UCP_LISTENER_PARAM_FIELD_CONN_HANDLER

UCP Worker, 34
UCP_LISTENER_PARAM_FIELD_SOCK_ADDR

UCP Worker, 34
ucp_listener_params, 28
ucp_listener_params_field

UCP Worker, 34
ucp_listener_params_t

UCP Worker, 31

ucp_listener_query
UCP Worker, 40

ucp_listener_reject
UCP Worker, 41

UCP_MADV_NORMAL
UCP Memory routines, 52

UCP_MADV_WILLNEED
UCP Memory routines, 53

ucp_mem_advice
UCP Memory routines, 52

ucp_mem_advice_t
UCP Memory routines, 50

ucp_mem_advise
UCP Memory routines, 57

UCP_MEM_ADVISE_PARAM_FIELD_ADDRESS
UCP Memory routines, 51

UCP_MEM_ADVISE_PARAM_FIELD_ADVICE
UCP Memory routines, 52

UCP_MEM_ADVISE_PARAM_FIELD_LENGTH
UCP Memory routines, 51

ucp_mem_advise_params, 49
ucp_mem_advise_params_field

UCP Memory routines, 51
ucp_mem_advise_params_t

UCP Memory routines, 50
ucp_mem_attr, 49
ucp_mem_attr_field

UCP Memory routines, 53
UCP_MEM_ATTR_FIELD_ADDRESS

UCP Memory routines, 53
UCP_MEM_ATTR_FIELD_LENGTH

UCP Memory routines, 53
UCP_MEM_ATTR_FIELD_MEM_TYPE

UCP Memory routines, 53
ucp_mem_attr_t

UCP Memory routines, 51
ucp_mem_h

UCP Memory routines, 51
ucp_mem_map

UCP Memory routines, 54
UCP_MEM_MAP_ALLOCATE

UCP Memory routines, 52
UCP_MEM_MAP_FIXED

UCP Memory routines, 52
UCP_MEM_MAP_LOCK

UCP Memory routines, 52
UCP_MEM_MAP_NONBLOCK

UCP Memory routines, 52
UCP_MEM_MAP_PARAM_FIELD_ADDRESS

UCP Memory routines, 51
UCP_MEM_MAP_PARAM_FIELD_EXPORTED_MEMH_BUFFER

UCP Memory routines, 51
UCP_MEM_MAP_PARAM_FIELD_FLAGS

UCP Memory routines, 51
UCP_MEM_MAP_PARAM_FIELD_LENGTH

UCP Memory routines, 51
UCP_MEM_MAP_PARAM_FIELD_MEMORY_TYPE

UCP Memory routines, 51

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

INDEX 285

UCP_MEM_MAP_PARAM_FIELD_PROT
UCP Memory routines, 51

ucp_mem_map_params, 48
ucp_mem_map_params_field

UCP Memory routines, 51
ucp_mem_map_params_t

UCP Memory routines, 50
UCP_MEM_MAP_PROT_LOCAL_READ

UCP Memory routines, 52
UCP_MEM_MAP_PROT_LOCAL_WRITE

UCP Memory routines, 52
UCP_MEM_MAP_PROT_REMOTE_READ

UCP Memory routines, 52
UCP_MEM_MAP_PROT_REMOTE_WRITE

UCP Memory routines, 52
UCP_MEM_MAP_SYMMETRIC_RKEY

UCP Memory routines, 52
ucp_mem_print_info

UCP Memory routines, 57
ucp_mem_query

UCP Memory routines, 57
ucp_mem_unmap

UCP Memory routines, 56
ucp_memh_buffer_release

UCP Memory routines, 58
ucp_memh_buffer_release_params, 49
ucp_memh_buffer_release_params_t

UCP Memory routines, 50
ucp_memh_pack

UCP Memory routines, 58
UCP_MEMH_PACK_FLAG_EXPORT

UCP Memory routines, 53
ucp_memh_pack_flags

UCP Memory routines, 53
UCP_MEMH_PACK_PARAM_FIELD_FLAGS

UCP Memory routines, 53
ucp_memh_pack_params, 49
ucp_memh_pack_params_field

UCP Memory routines, 53
ucp_memh_pack_params_t

UCP Memory routines, 50
UCP_OP_ATTR_FIELD_CALLBACK

UCP Communication routines, 90
UCP_OP_ATTR_FIELD_DATATYPE

UCP Communication routines, 90
UCP_OP_ATTR_FIELD_FLAGS

UCP Communication routines, 90
UCP_OP_ATTR_FIELD_MEMH

UCP Communication routines, 90
UCP_OP_ATTR_FIELD_MEMORY_TYPE

UCP Communication routines, 90
UCP_OP_ATTR_FIELD_RECV_INFO

UCP Communication routines, 90
UCP_OP_ATTR_FIELD_REPLY_BUFFER

UCP Communication routines, 90
UCP_OP_ATTR_FIELD_REQUEST

UCP Communication routines, 90
UCP_OP_ATTR_FIELD_USER_DATA

UCP Communication routines, 90
UCP_OP_ATTR_FLAG_FAST_CMPL

UCP Communication routines, 90
UCP_OP_ATTR_FLAG_FORCE_IMM_CMPL

UCP Communication routines, 90
UCP_OP_ATTR_FLAG_MULTI_SEND

UCP Communication routines, 90
UCP_OP_ATTR_FLAG_NO_IMM_CMPL

UCP Communication routines, 90
ucp_op_attr_t

UCP Communication routines, 89
UCP_PARAM_FIELD_ESTIMATED_NUM_EPS

UCP Application Context, 19
UCP_PARAM_FIELD_ESTIMATED_NUM_PPN

UCP Application Context, 19
UCP_PARAM_FIELD_FEATURES

UCP Application Context, 19
UCP_PARAM_FIELD_MT_WORKERS_SHARED

UCP Application Context, 19
UCP_PARAM_FIELD_NAME

UCP Application Context, 19
UCP_PARAM_FIELD_REQUEST_CLEANUP

UCP Application Context, 19
UCP_PARAM_FIELD_REQUEST_INIT

UCP Application Context, 19
UCP_PARAM_FIELD_REQUEST_SIZE

UCP Application Context, 19
UCP_PARAM_FIELD_TAG_SENDER_MASK

UCP Application Context, 19
ucp_params, 126
ucp_params_field

UCP Application Context, 19
ucp_params_t

UCP Configuration, 127
ucp_put

UCP Communication routines, 106
ucp_put_nb

UCP Communication routines, 121
ucp_put_nbi

UCP Communication routines, 121
ucp_put_nbx

UCP Communication routines, 101
ucp_req_attr_field

UCP Communication routines, 90
ucp_request_alloc

UCP Communication routines, 106
UCP_REQUEST_ATTR_FIELD_INFO_STRING

UCP Communication routines, 90
UCP_REQUEST_ATTR_FIELD_INFO_STRING_SIZE

UCP Communication routines, 90
UCP_REQUEST_ATTR_FIELD_MEM_TYPE

UCP Communication routines, 90
UCP_REQUEST_ATTR_FIELD_STATUS

UCP Communication routines, 90
ucp_request_attr_t, 85
ucp_request_cancel

UCP Communication routines, 105
ucp_request_check_status

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

286 INDEX

UCP Communication routines, 104
ucp_request_cleanup_callback_t

UCP Application Context, 18
ucp_request_free

UCP Communication routines, 106
ucp_request_init_callback_t

UCP Application Context, 18
ucp_request_is_completed

UCP Communication routines, 106
ucp_request_param_t, 16
ucp_request_param_t.cb, 17
ucp_request_param_t.recv_info, 17
ucp_request_query

UCP Communication routines, 92
ucp_request_release

UCP Endpoint, 78
ucp_request_test

UCP Endpoint, 79
ucp_rkey_buffer_release

UCP Memory routines, 61
ucp_rkey_compare

UCP Memory routines, 54
ucp_rkey_compare_params, 48
ucp_rkey_compare_params_t

UCP Memory routines, 50
ucp_rkey_destroy

UCP Memory routines, 60
ucp_rkey_h

UCP Memory routines, 50
ucp_rkey_pack

UCP Memory routines, 60
ucp_rkey_ptr

UCP Memory routines, 59
ucp_send_am_flags

UCP Worker, 35
ucp_send_callback_t

UCP Communication routines, 86
ucp_send_nbx_callback_t

UCP Communication routines, 86
ucp_stream_data_release

UCP Communication routines, 105
ucp_stream_poll_ep, 67
ucp_stream_poll_ep_t

UCP Endpoint, 71
ucp_stream_recv_callback_t

UCP Communication routines, 87
ucp_stream_recv_data_nb

UCP Communication routines, 97
UCP_STREAM_RECV_FLAG_WAITALL

UCP Communication routines, 89
ucp_stream_recv_flags_t

UCP Communication routines, 89
ucp_stream_recv_nb

UCP Communication routines, 115
ucp_stream_recv_nbx

UCP Communication routines, 96
ucp_stream_recv_nbx_callback_t

UCP Communication routines, 87

ucp_stream_recv_request_test
UCP Communication routines, 105

ucp_stream_send_nb
UCP Communication routines, 114

ucp_stream_send_nbx
UCP Communication routines, 94

ucp_stream_worker_poll
UCP Worker, 39

ucp_tag_message_h
UCP Communication routines, 86

ucp_tag_msg_recv_nb
UCP Communication routines, 120

ucp_tag_msg_recv_nbx
UCP Communication routines, 99

ucp_tag_probe_nb
UCP Communication routines, 98

ucp_tag_recv_callback_t
UCP Communication routines, 88

ucp_tag_recv_info, 15
ucp_tag_recv_info_t

UCP Application Context, 18
ucp_tag_recv_nb

UCP Communication routines, 119
ucp_tag_recv_nbr

UCP Communication routines, 119
ucp_tag_recv_nbx

UCP Communication routines, 98
ucp_tag_recv_nbx_callback_t

UCP Communication routines, 88
ucp_tag_recv_request_test

UCP Communication routines, 104
ucp_tag_send_nb

UCP Communication routines, 116
ucp_tag_send_nbr

UCP Communication routines, 117
ucp_tag_send_nbx

UCP Communication routines, 95
ucp_tag_send_sync_nb

UCP Communication routines, 118
ucp_tag_send_sync_nbx

UCP Communication routines, 96
ucp_tag_t

UCP Communication routines, 86
ucp_transport_entry_t, 69
ucp_transports_t, 70
UCP_WAKEUP_AMO

UCP Worker, 36
UCP_WAKEUP_EDGE

UCP Worker, 36
ucp_wakeup_event_t

UCP Worker, 33
ucp_wakeup_event_types

UCP Worker, 36
UCP_WAKEUP_RMA

UCP Worker, 36
UCP_WAKEUP_RX

UCP Worker, 36
UCP_WAKEUP_TAG_RECV

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

INDEX 287

UCP Worker, 36
UCP_WAKEUP_TAG_SEND

UCP Worker, 36
UCP_WAKEUP_TX

UCP Worker, 36
ucp_worker_address_attr, 27
ucp_worker_address_attr_field

UCP Worker, 34
UCP_WORKER_ADDRESS_ATTR_FIELD_UID

UCP Worker, 35
ucp_worker_address_attr_t

UCP Worker, 31
UCP_WORKER_ADDRESS_FLAG_NET_ONLY

UCP Worker, 34
ucp_worker_address_flags_t

UCP Worker, 34
ucp_worker_address_query

UCP Worker, 38
ucp_worker_arm

UCP Wake-up routines, 63
ucp_worker_attr, 26
ucp_worker_attr_field

UCP Worker, 34
UCP_WORKER_ATTR_FIELD_ADDRESS

UCP Worker, 34
UCP_WORKER_ATTR_FIELD_ADDRESS_FLAGS

UCP Worker, 34
UCP_WORKER_ATTR_FIELD_MAX_AM_HEADER

UCP Worker, 34
UCP_WORKER_ATTR_FIELD_MAX_INFO_STRING

UCP Worker, 34
UCP_WORKER_ATTR_FIELD_NAME

UCP Worker, 34
UCP_WORKER_ATTR_FIELD_THREAD_MODE

UCP Worker, 34
ucp_worker_attr_t

UCP Worker, 30
ucp_worker_create

UCP Worker, 36
ucp_worker_destroy

UCP Worker, 37
ucp_worker_fence

UCP Worker, 42
UCP_WORKER_FLAG_IGNORE_REQUEST_LEAK

UCP Worker, 34
ucp_worker_flags_t

UCP Worker, 33
ucp_worker_flush

UCP Worker, 43
ucp_worker_flush_nb

UCP Worker, 45
ucp_worker_flush_nbx

UCP Worker, 43
ucp_worker_get_address

UCP Worker, 44
ucp_worker_get_efd

UCP Wake-up routines, 62
ucp_worker_h

UCP Worker, 32
UCP_WORKER_PARAM_FIELD_AM_ALIGNMENT

UCP Worker, 33
UCP_WORKER_PARAM_FIELD_CLIENT_ID

UCP Worker, 33
UCP_WORKER_PARAM_FIELD_CPU_MASK

UCP Worker, 33
UCP_WORKER_PARAM_FIELD_EVENT_FD

UCP Worker, 33
UCP_WORKER_PARAM_FIELD_EVENTS

UCP Worker, 33
UCP_WORKER_PARAM_FIELD_FLAGS

UCP Worker, 33
UCP_WORKER_PARAM_FIELD_NAME

UCP Worker, 33
UCP_WORKER_PARAM_FIELD_THREAD_MODE

UCP Worker, 33
UCP_WORKER_PARAM_FIELD_USER_DATA

UCP Worker, 33
ucp_worker_params, 26
ucp_worker_params_field

UCP Worker, 33
ucp_worker_params_t

UCP Worker, 30
ucp_worker_print_info

UCP Worker, 38
ucp_worker_progress

UCP Worker, 39
ucp_worker_query

UCP Worker, 37
ucp_worker_release_address

UCP Worker, 38
ucp_worker_set_am_handler

UCP Worker, 44
ucp_worker_set_am_recv_handler

UCP Worker, 42
ucp_worker_signal

UCP Wake-up routines, 64
ucp_worker_wait

UCP Wake-up routines, 62
ucp_worker_wait_mem

UCP Wake-up routines, 63
UCS Communication Resource, 232

ucs_async_add_timer, 237
ucs_async_context_create, 238
ucs_async_context_destroy, 238
ucs_async_event_cb_t, 233
ucs_async_modify_handler, 238
ucs_async_poll, 239
ucs_async_remove_handler, 237
ucs_async_set_event_handler, 236
UCS_CALLBACKQ_FLAG_FAST, 234
UCS_CALLBACKQ_FLAG_ONESHOT, 234
ucs_callbackq_flags, 234
UCS_ERR_ALREADY_EXISTS, 235
UCS_ERR_BUFFER_TOO_SMALL, 235
UCS_ERR_BUSY, 235
UCS_ERR_CANCELED, 235

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

288 INDEX

UCS_ERR_CONNECTION_RESET, 236
UCS_ERR_ENDPOINT_TIMEOUT, 236
UCS_ERR_EXCEEDS_LIMIT, 236
UCS_ERR_FIRST_ENDPOINT_FAILURE, 236
UCS_ERR_FIRST_LINK_FAILURE, 236
UCS_ERR_INVALID_ADDR, 235
UCS_ERR_INVALID_PARAM, 235
UCS_ERR_IO_ERROR, 235
UCS_ERR_LAST, 236
UCS_ERR_LAST_ENDPOINT_FAILURE, 236
UCS_ERR_LAST_LINK_FAILURE, 236
UCS_ERR_MESSAGE_TRUNCATED, 235
UCS_ERR_NO_DEVICE, 235
UCS_ERR_NO_ELEM, 235
UCS_ERR_NO_MEMORY, 235
UCS_ERR_NO_MESSAGE, 235
UCS_ERR_NO_PROGRESS, 235
UCS_ERR_NO_RESOURCE, 235
UCS_ERR_NOT_CONNECTED, 236
UCS_ERR_NOT_IMPLEMENTED, 235
UCS_ERR_OUT_OF_RANGE, 235
UCS_ERR_REJECTED, 236
UCS_ERR_SHMEM_SEGMENT, 235
UCS_ERR_SOME_CONNECTS_FAILED, 235
UCS_ERR_TIMED_OUT, 235
UCS_ERR_UNREACHABLE, 235
UCS_ERR_UNSUPPORTED, 236
UCS_INPROGRESS, 235
ucs_memory_type, 234
UCS_MEMORY_TYPE_CUDA, 235
UCS_MEMORY_TYPE_CUDA_MANAGED, 235
UCS_MEMORY_TYPE_HOST, 235
UCS_MEMORY_TYPE_LAST, 235
UCS_MEMORY_TYPE_RDMA, 235
UCS_MEMORY_TYPE_ROCM, 235
UCS_MEMORY_TYPE_ROCM_MANAGED, 235
ucs_memory_type_t, 234
UCS_MEMORY_TYPE_UNKNOWN, 235
UCS_MEMORY_TYPE_ZE_DEVICE, 235
UCS_MEMORY_TYPE_ZE_HOST, 235
UCS_MEMORY_TYPE_ZE_MANAGED, 235
UCS_OK, 235
ucs_sock_addr_t, 234
ucs_status_ptr_t, 234
ucs_status_t, 235
UCS_THREAD_MODE_LAST, 236
UCS_THREAD_MODE_MULTI, 236
UCS_THREAD_MODE_SERIALIZED, 236
UCS_THREAD_MODE_SINGLE, 236
ucs_thread_mode_t, 236
ucs_time_t, 234

ucs_async_add_timer
UCS Communication Resource, 237

ucs_async_context_create
UCS Communication Resource, 238

ucs_async_context_destroy
UCS Communication Resource, 238

ucs_async_event_cb_t

UCS Communication Resource, 233
ucs_async_modify_handler

UCS Communication Resource, 238
ucs_async_poll

UCS Communication Resource, 239
ucs_async_remove_handler

UCS Communication Resource, 237
ucs_async_set_event_handler

UCS Communication Resource, 236
UCS_CALLBACKQ_FLAG_FAST

UCS Communication Resource, 234
UCS_CALLBACKQ_FLAG_ONESHOT

UCS Communication Resource, 234
ucs_callbackq_flags

UCS Communication Resource, 234
UCS_ERR_ALREADY_EXISTS

UCS Communication Resource, 235
UCS_ERR_BUFFER_TOO_SMALL

UCS Communication Resource, 235
UCS_ERR_BUSY

UCS Communication Resource, 235
UCS_ERR_CANCELED

UCS Communication Resource, 235
UCS_ERR_CONNECTION_RESET

UCS Communication Resource, 236
UCS_ERR_ENDPOINT_TIMEOUT

UCS Communication Resource, 236
UCS_ERR_EXCEEDS_LIMIT

UCS Communication Resource, 236
UCS_ERR_FIRST_ENDPOINT_FAILURE

UCS Communication Resource, 236
UCS_ERR_FIRST_LINK_FAILURE

UCS Communication Resource, 236
UCS_ERR_INVALID_ADDR

UCS Communication Resource, 235
UCS_ERR_INVALID_PARAM

UCS Communication Resource, 235
UCS_ERR_IO_ERROR

UCS Communication Resource, 235
UCS_ERR_LAST

UCS Communication Resource, 236
UCS_ERR_LAST_ENDPOINT_FAILURE

UCS Communication Resource, 236
UCS_ERR_LAST_LINK_FAILURE

UCS Communication Resource, 236
UCS_ERR_MESSAGE_TRUNCATED

UCS Communication Resource, 235
UCS_ERR_NO_DEVICE

UCS Communication Resource, 235
UCS_ERR_NO_ELEM

UCS Communication Resource, 235
UCS_ERR_NO_MEMORY

UCS Communication Resource, 235
UCS_ERR_NO_MESSAGE

UCS Communication Resource, 235
UCS_ERR_NO_PROGRESS

UCS Communication Resource, 235
UCS_ERR_NO_RESOURCE

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

INDEX 289

UCS Communication Resource, 235
UCS_ERR_NOT_CONNECTED

UCS Communication Resource, 236
UCS_ERR_NOT_IMPLEMENTED

UCS Communication Resource, 235
UCS_ERR_OUT_OF_RANGE

UCS Communication Resource, 235
UCS_ERR_REJECTED

UCS Communication Resource, 236
UCS_ERR_SHMEM_SEGMENT

UCS Communication Resource, 235
UCS_ERR_SOME_CONNECTS_FAILED

UCS Communication Resource, 235
UCS_ERR_TIMED_OUT

UCS Communication Resource, 235
UCS_ERR_UNREACHABLE

UCS Communication Resource, 235
UCS_ERR_UNSUPPORTED

UCS Communication Resource, 236
UCS_INPROGRESS

UCS Communication Resource, 235
ucs_memory_type

UCS Communication Resource, 234
UCS_MEMORY_TYPE_CUDA

UCS Communication Resource, 235
UCS_MEMORY_TYPE_CUDA_MANAGED

UCS Communication Resource, 235
UCS_MEMORY_TYPE_HOST

UCS Communication Resource, 235
UCS_MEMORY_TYPE_LAST

UCS Communication Resource, 235
UCS_MEMORY_TYPE_RDMA

UCS Communication Resource, 235
UCS_MEMORY_TYPE_ROCM

UCS Communication Resource, 235
UCS_MEMORY_TYPE_ROCM_MANAGED

UCS Communication Resource, 235
ucs_memory_type_t

UCS Communication Resource, 234
UCS_MEMORY_TYPE_UNKNOWN

UCS Communication Resource, 235
UCS_MEMORY_TYPE_ZE_DEVICE

UCS Communication Resource, 235
UCS_MEMORY_TYPE_ZE_HOST

UCS Communication Resource, 235
UCS_MEMORY_TYPE_ZE_MANAGED

UCS Communication Resource, 235
UCS_OK

UCS Communication Resource, 235
ucs_sock_addr, 233
ucs_sock_addr_t

UCS Communication Resource, 234
ucs_status_ptr_t

UCS Communication Resource, 234
ucs_status_t

UCS Communication Resource, 235
UCS_THREAD_MODE_LAST

UCS Communication Resource, 236

UCS_THREAD_MODE_MULTI
UCS Communication Resource, 236

UCS_THREAD_MODE_SERIALIZED
UCS Communication Resource, 236

UCS_THREAD_MODE_SINGLE
UCS Communication Resource, 236

ucs_thread_mode_t
UCS Communication Resource, 236

ucs_time_t
UCS Communication Resource, 234

UCT Active messages, 198
uct_am_callback_t, 199
uct_am_trace_type, 200
UCT_AM_TRACE_TYPE_LAST, 200
UCT_AM_TRACE_TYPE_RECV, 200
UCT_AM_TRACE_TYPE_RECV_DROP, 200
UCT_AM_TRACE_TYPE_SEND, 200
UCT_AM_TRACE_TYPE_SEND_DROP, 200
uct_am_tracer_t, 200
uct_ep_am_bcopy, 203
uct_ep_am_short, 202
uct_ep_am_short_iov, 202
uct_ep_am_zcopy, 203
uct_iface_release_desc, 201
uct_iface_set_am_handler, 201
uct_iface_set_am_tracer, 201
uct_msg_flags, 200
UCT_SEND_FLAG_PEER_CHECK, 200
UCT_SEND_FLAG_SIGNALED, 200

UCT Atomic operations, 206
uct_ep_atomic32_fetch, 207
uct_ep_atomic32_post, 207
uct_ep_atomic64_fetch, 207
uct_ep_atomic64_post, 207
uct_ep_atomic_cswap32, 207
uct_ep_atomic_cswap64, 206

UCT client-server operations, 215
uct_cm_attr_field, 224
UCT_CM_ATTR_FIELD_MAX_CONN_PRIV, 224
uct_cm_client_ep_conn_notify, 230
uct_cm_close, 229
uct_cm_config_read, 229
uct_cm_ep_client_connect_args_field, 226
UCT_CM_EP_CLIENT_CONNECT_ARGS_FIELD_REMOTE_DATA,

227
UCT_CM_EP_CLIENT_CONNECT_ARGS_FIELD_STATUS,

227
uct_cm_ep_client_connect_args_t, 222
uct_cm_ep_client_connect_callback_t, 223
uct_cm_ep_priv_data_pack_args_field, 225
UCT_CM_EP_PRIV_DATA_PACK_ARGS_FIELD_DEVICE_NAME,

225
uct_cm_ep_priv_data_pack_args_t, 221
uct_cm_ep_priv_data_pack_callback_t, 223
uct_cm_ep_resolve_args_field, 225
UCT_CM_EP_RESOLVE_ARGS_FIELD_DEV_NAME,

226

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

290 INDEX

UCT_CM_EP_RESOLVE_ARGS_FIELD_STATUS,
226

uct_cm_ep_resolve_args_t, 221
uct_cm_ep_resolve_callback_t, 224
uct_cm_ep_server_conn_notify_args_field, 227
UCT_CM_EP_SERVER_CONN_NOTIFY_ARGS_FIELD_STATUS,

227
uct_cm_ep_server_conn_notify_args_t, 222
uct_cm_ep_server_conn_notify_callback_t, 222
uct_cm_listener_conn_request_args_field, 226
UCT_CM_LISTENER_CONN_REQUEST_ARGS_FIELD_CLIENT_ADDR,

226
UCT_CM_LISTENER_CONN_REQUEST_ARGS_FIELD_CONN_REQUEST,

226
UCT_CM_LISTENER_CONN_REQUEST_ARGS_FIELD_DEV_NAME,

226
UCT_CM_LISTENER_CONN_REQUEST_ARGS_FIELD_REMOTE_DATA,

226
uct_cm_listener_conn_request_args_t, 221
uct_cm_listener_conn_request_callback_t, 222
uct_cm_open, 228
uct_cm_query, 229
uct_cm_remote_data_field, 226
UCT_CM_REMOTE_DATA_FIELD_CONN_PRIV_DATA,

226
UCT_CM_REMOTE_DATA_FIELD_CONN_PRIV_DATA_LENGTH,

226
UCT_CM_REMOTE_DATA_FIELD_DEV_ADDR,

226
UCT_CM_REMOTE_DATA_FIELD_DEV_ADDR_LENGTH,

226
uct_cm_remote_data_t, 221
uct_ep_connect, 228
UCT_EP_CONNECT_PARAM_FIELD_PRIVATE_DATA,

225
UCT_EP_CONNECT_PARAM_FIELD_PRIVATE_DATA_LENGTH,

225
uct_ep_connect_params_field, 225
uct_ep_disconnect, 228
uct_ep_disconnect_cb_t, 223
uct_iface_accept, 227
uct_iface_reject, 227
uct_listener_attr_field, 224
UCT_LISTENER_ATTR_FIELD_SOCKADDR, 225
uct_listener_create, 230
uct_listener_destroy, 231
UCT_LISTENER_PARAM_FIELD_BACKLOG, 225
UCT_LISTENER_PARAM_FIELD_CONN_REQUEST_CB,

225
UCT_LISTENER_PARAM_FIELD_USER_DATA,

225
uct_listener_params_field, 225
uct_listener_query, 231
uct_listener_reject, 231
uct_sockaddr_conn_request_callback_t, 222

UCT Communication Context, 181
UCT_ALLOC_METHOD_DEFAULT, 182
UCT_ALLOC_METHOD_HEAP, 182

UCT_ALLOC_METHOD_HUGE, 182
UCT_ALLOC_METHOD_LAST, 182
UCT_ALLOC_METHOD_MD, 182
UCT_ALLOC_METHOD_MMAP, 182
uct_alloc_method_t, 181
UCT_ALLOC_METHOD_THP, 181
uct_config_get, 183
uct_config_modify, 184
uct_worker_create, 182
uct_worker_destroy, 182
uct_worker_progress, 184
uct_worker_progress_register_safe, 182
uct_worker_progress_unregister_safe, 183

UCT Communication Resource, 137
uct_am_trace_type_t, 153
uct_async_event_cb_t, 157
UCT_CB_FLAG_ASYNC, 159
UCT_CB_FLAG_RESERVED, 159
uct_cb_flags, 159
UCT_CB_PARAM_FLAG_DESC, 162
UCT_CB_PARAM_FLAG_FIRST, 162
UCT_CB_PARAM_FLAG_MORE, 162
uct_cb_param_flags, 161
uct_cm_attr_t, 154
uct_cm_config_t, 152
uct_cm_h, 154
uct_cm_t, 154
uct_completion_callback_t, 155
uct_completion_t, 153
uct_completion_update_status, 175
uct_component_attr_field, 157
UCT_COMPONENT_ATTR_FIELD_FLAGS, 157
UCT_COMPONENT_ATTR_FIELD_MD_RESOURCE_COUNT,

157
UCT_COMPONENT_ATTR_FIELD_MD_RESOURCES,

157
UCT_COMPONENT_ATTR_FIELD_NAME, 157
uct_component_attr_t, 152
UCT_COMPONENT_FLAG_CM, 158
UCT_COMPONENT_FLAG_RKEY_PTR, 158
uct_component_h, 152
uct_component_query, 162
uct_config_release, 165
uct_conn_request_h, 155
uct_device_addr_t, 154
UCT_DEVICE_TYPE_ACC, 158
UCT_DEVICE_TYPE_LAST, 158
UCT_DEVICE_TYPE_NET, 158
UCT_DEVICE_TYPE_SELF, 158
UCT_DEVICE_TYPE_SHM, 158
uct_device_type_t, 158
uct_ep_addr_t, 154
uct_ep_attr_t, 153
uct_ep_check, 167
uct_ep_connect_params_t, 154
uct_ep_connect_to_ep, 170
uct_ep_create, 169
uct_ep_destroy, 170

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

INDEX 291

uct_ep_fence, 173
uct_ep_flush, 172
uct_ep_get_address, 170
uct_ep_h, 152
UCT_EP_PARAM_FIELD_CM, 160
UCT_EP_PARAM_FIELD_CM_RESOLVE_CB,

161
UCT_EP_PARAM_FIELD_CONN_REQUEST, 160
UCT_EP_PARAM_FIELD_DEV_ADDR, 160
UCT_EP_PARAM_FIELD_DEV_ADDR_LENGTH,

161
UCT_EP_PARAM_FIELD_IFACE, 160
UCT_EP_PARAM_FIELD_IFACE_ADDR, 160
UCT_EP_PARAM_FIELD_IFACE_ADDR_LENGTH,

161
UCT_EP_PARAM_FIELD_LOCAL_SOCKADDR,

161
UCT_EP_PARAM_FIELD_PATH_INDEX, 161
UCT_EP_PARAM_FIELD_PRIV_DATA, 161
UCT_EP_PARAM_FIELD_PRIV_DATA_LENGTH,

161
UCT_EP_PARAM_FIELD_SOCKADDR, 160
UCT_EP_PARAM_FIELD_SOCKADDR_CB_FLAGS,

160
UCT_EP_PARAM_FIELD_SOCKADDR_CONNECT_CB_CLIENT,

160
UCT_EP_PARAM_FIELD_SOCKADDR_DISCONNECT_CB,

160
UCT_EP_PARAM_FIELD_SOCKADDR_NOTIFY_CB_SERVER,

160
UCT_EP_PARAM_FIELD_SOCKADDR_PACK_CB,

160
UCT_EP_PARAM_FIELD_USER_DATA, 160
uct_ep_params_field, 160
uct_ep_params_t, 154
uct_ep_pending_add, 171
uct_ep_pending_purge, 172
uct_error_handler_t, 156
UCT_EVENT_RECV, 158
UCT_EVENT_RECV_SIG, 158
UCT_EVENT_SEND_COMP, 158
UCT_FLUSH_FLAG_CANCEL, 158
UCT_FLUSH_FLAG_LOCAL, 158
UCT_FLUSH_FLAG_REMOTE, 159
uct_flush_flags, 158
uct_iface_addr_t, 154
uct_iface_attr_t, 153
uct_iface_close, 166
uct_iface_config_t, 152
uct_iface_event_arm, 168
uct_iface_event_fd_get, 168
uct_iface_event_types, 158
uct_iface_feature, 161
UCT_IFACE_FEATURE_AM, 161
UCT_IFACE_FEATURE_AMO32, 161
UCT_IFACE_FEATURE_AMO64, 161
UCT_IFACE_FEATURE_FLUSH_REMOTE, 161
UCT_IFACE_FEATURE_GET, 161

UCT_IFACE_FEATURE_LAST, 161
UCT_IFACE_FEATURE_PUT, 161
UCT_IFACE_FEATURE_TAG, 161
uct_iface_fence, 171
uct_iface_flush, 171
uct_iface_get_address, 167
uct_iface_get_device_address, 166
uct_iface_h, 152
uct_iface_is_reachable, 167
uct_iface_mem_alloc, 168
uct_iface_mem_free, 169
uct_iface_open, 165
uct_iface_open_mode, 159
UCT_IFACE_OPEN_MODE_DEVICE, 159
UCT_IFACE_OPEN_MODE_SOCKADDR_CLIENT,

159
UCT_IFACE_OPEN_MODE_SOCKADDR_SERVER,

159
UCT_IFACE_PARAM_FIELD_AM_ALIGN_OFFSET,

160
UCT_IFACE_PARAM_FIELD_AM_ALIGNMENT,

160
UCT_IFACE_PARAM_FIELD_ASYNC_EVENT_ARG,

160
UCT_IFACE_PARAM_FIELD_ASYNC_EVENT_CB,

160
UCT_IFACE_PARAM_FIELD_CPU_MASK, 160
UCT_IFACE_PARAM_FIELD_DEVICE, 160
UCT_IFACE_PARAM_FIELD_ERR_HANDLER,

160
UCT_IFACE_PARAM_FIELD_ERR_HANDLER_ARG,

160
UCT_IFACE_PARAM_FIELD_ERR_HANDLER_FLAGS,

160
UCT_IFACE_PARAM_FIELD_FEATURES, 160
UCT_IFACE_PARAM_FIELD_HW_TM_EAGER_ARG,

160
UCT_IFACE_PARAM_FIELD_HW_TM_EAGER_CB,

160
UCT_IFACE_PARAM_FIELD_HW_TM_RNDV_ARG,

160
UCT_IFACE_PARAM_FIELD_HW_TM_RNDV_CB,

160
UCT_IFACE_PARAM_FIELD_KEEPALIVE_INTERVAL,

160
UCT_IFACE_PARAM_FIELD_OPEN_MODE, 160
UCT_IFACE_PARAM_FIELD_RX_HEADROOM,

160
UCT_IFACE_PARAM_FIELD_SOCKADDR, 160
UCT_IFACE_PARAM_FIELD_STATS_ROOT, 160
uct_iface_params_field, 159
uct_iface_params_t, 153
uct_iface_progress, 175
uct_iface_progress_disable, 173
uct_iface_progress_enable, 173
uct_iface_query, 166
uct_iov_t, 155
uct_listener_attr_t, 154

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

292 INDEX

uct_listener_h, 154
uct_listener_params_t, 154
uct_md_attr_t, 153
uct_md_close, 163
uct_md_config_t, 152
uct_md_h, 153
uct_md_iface_config_read, 164
uct_md_open, 163
uct_md_ops_t, 153
uct_md_query_tl_resources, 164
uct_md_resource_desc_t, 152
uct_md_t, 153
uct_mem_h, 152
uct_pack_callback_t, 156
uct_pending_callback_t, 155
uct_pending_purge_callback_t, 156
uct_pending_req_t, 153
UCT_PROGRESS_RECV, 159
UCT_PROGRESS_SEND, 159
UCT_PROGRESS_THREAD_SAFE, 159
uct_progress_types, 159
uct_query_components, 162
uct_release_component_list, 162
uct_release_tl_resource_list, 164
uct_rkey_ctx_h, 153
uct_rkey_t, 152
uct_tag_context_t, 154
UCT_TAG_RECV_CB_INLINE_DATA, 161
uct_tag_t, 155
uct_tl_resource_desc_t, 152
uct_unpack_callback_t, 157
uct_worker_cb_id_t, 155
uct_worker_h, 153

UCT interface for asynchronous event capabilities, 180
UCT_IFACE_FLAG_EVENT_ASYNC_CB, 180
UCT_IFACE_FLAG_EVENT_FD, 180
UCT_IFACE_FLAG_EVENT_RECV, 180
UCT_IFACE_FLAG_EVENT_RECV_SIG, 180
UCT_IFACE_FLAG_EVENT_SEND_COMP, 180

UCT interface operations and capabilities, 175
UCT_IFACE_FLAG_AM_BCOPY, 176
UCT_IFACE_FLAG_AM_DUP, 179
UCT_IFACE_FLAG_AM_SHORT, 176
UCT_IFACE_FLAG_AM_ZCOPY, 176
UCT_IFACE_FLAG_ATOMIC_CPU, 177
UCT_IFACE_FLAG_ATOMIC_DEVICE, 177
UCT_IFACE_FLAG_CB_ASYNC, 179
UCT_IFACE_FLAG_CB_SYNC, 179
UCT_IFACE_FLAG_CONNECT_TO_EP, 178
UCT_IFACE_FLAG_CONNECT_TO_IFACE, 178
UCT_IFACE_FLAG_CONNECT_TO_SOCKADDR,

179
UCT_IFACE_FLAG_EP_CHECK, 178
UCT_IFACE_FLAG_EP_KEEPALIVE, 179
UCT_IFACE_FLAG_ERRHANDLE_AM_ID, 178
UCT_IFACE_FLAG_ERRHANDLE_BCOPY_BUF,

177

UCT_IFACE_FLAG_ERRHANDLE_BCOPY_LEN,
178

UCT_IFACE_FLAG_ERRHANDLE_PEER_FAILURE,
178

UCT_IFACE_FLAG_ERRHANDLE_REMOTE_MEM,
178

UCT_IFACE_FLAG_ERRHANDLE_SHORT_BUF,
177

UCT_IFACE_FLAG_ERRHANDLE_ZCOPY_BUF,
178

UCT_IFACE_FLAG_GET_BCOPY, 177
UCT_IFACE_FLAG_GET_SHORT, 177
UCT_IFACE_FLAG_GET_ZCOPY, 177
UCT_IFACE_FLAG_INTER_NODE, 180
UCT_IFACE_FLAG_PENDING, 176
UCT_IFACE_FLAG_PUT_BCOPY, 177
UCT_IFACE_FLAG_PUT_SHORT, 176
UCT_IFACE_FLAG_PUT_ZCOPY, 177
UCT_IFACE_FLAG_TAG_EAGER_BCOPY, 179
UCT_IFACE_FLAG_TAG_EAGER_SHORT, 179
UCT_IFACE_FLAG_TAG_EAGER_ZCOPY, 179
UCT_IFACE_FLAG_TAG_RNDV_ZCOPY, 179

UCT Memory Domain, 185
uct_allocated_memory_t, 190
UCT_MADV_NORMAL, 192
UCT_MADV_WILLNEED, 192
uct_md_config_read, 196
uct_md_detect_memory_type, 195
UCT_MD_FLAG_ADVISE, 191
UCT_MD_FLAG_ALLOC, 190
UCT_MD_FLAG_EXPORTED_MKEY, 191
UCT_MD_FLAG_FIXED, 191
UCT_MD_FLAG_INVALIDATE, 191
UCT_MD_FLAG_LAST, 191
UCT_MD_FLAG_NEED_MEMH, 191
UCT_MD_FLAG_NEED_RKEY, 191
UCT_MD_FLAG_REG, 191
UCT_MD_FLAG_REG_DMABUF, 191
UCT_MD_FLAG_RKEY_PTR, 191
UCT_MD_FLAG_SOCKADDR, 191
uct_md_is_sockaddr_accessible, 196
UCT_MD_MEM_ACCESS_ALL, 192
UCT_MD_MEM_ACCESS_LOCAL_READ, 191
UCT_MD_MEM_ACCESS_LOCAL_WRITE, 191
UCT_MD_MEM_ACCESS_REMOTE_ATOMIC,

191
UCT_MD_MEM_ACCESS_REMOTE_GET, 191
UCT_MD_MEM_ACCESS_REMOTE_PUT, 191
UCT_MD_MEM_ACCESS_RMA, 192
uct_md_mem_advise, 194
uct_md_mem_attr_field, 192
UCT_MD_MEM_ATTR_FIELD_ALLOC_LENGTH,

192
UCT_MD_MEM_ATTR_FIELD_BASE_ADDRESS,

192
UCT_MD_MEM_ATTR_FIELD_DMABUF_FD, 192
UCT_MD_MEM_ATTR_FIELD_DMABUF_OFFSET,

192

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

INDEX 293

UCT_MD_MEM_ATTR_FIELD_MEM_TYPE, 192
UCT_MD_MEM_ATTR_FIELD_SYS_DEV, 192
uct_md_mem_attr_field_t, 190
uct_md_mem_attr_t, 190
uct_md_mem_dereg, 194
UCT_MD_MEM_FLAG_FIXED, 191
UCT_MD_MEM_FLAG_HIDE_ERRORS, 191
UCT_MD_MEM_FLAG_LOCK, 191
UCT_MD_MEM_FLAG_NONBLOCK, 191
uct_md_mem_flags, 191
UCT_MD_MEM_GVA, 192
uct_md_mem_query, 193
uct_md_mem_reg, 194
UCT_MD_MEM_SYMMETRIC_RKEY, 192
uct_md_mkey_pack, 197
uct_md_query, 193
uct_mem_advice_t, 192
uct_mem_alloc, 195
UCT_MEM_ALLOC_PARAM_FIELD_ADDRESS,

193
UCT_MEM_ALLOC_PARAM_FIELD_FLAGS, 193
UCT_MEM_ALLOC_PARAM_FIELD_MDS, 193
UCT_MEM_ALLOC_PARAM_FIELD_MEM_TYPE,

193
UCT_MEM_ALLOC_PARAM_FIELD_NAME, 193
UCT_MEM_ALLOC_PARAM_FIELD_SYS_DEVICE,

193
uct_mem_alloc_params_field_t, 192
uct_mem_free, 196
uct_rkey_bundle_t, 190
uct_rkey_ptr, 198
uct_rkey_release, 198
uct_rkey_unpack, 197
UCT_SOCKADDR_ACC_LOCAL, 190
UCT_SOCKADDR_ACC_REMOTE, 190
uct_sockaddr_accessibility_t, 190

UCT Remote memory access operations, 204
uct_ep_get_bcopy, 205
uct_ep_get_short, 205
uct_ep_get_zcopy, 205
uct_ep_put_bcopy, 204
uct_ep_put_short, 204
uct_ep_put_zcopy, 204

UCT Tag matching operations, 208
uct_ep_tag_eager_bcopy, 211
uct_ep_tag_eager_short, 210
uct_ep_tag_eager_zcopy, 211
uct_ep_tag_rndv_cancel, 213
uct_ep_tag_rndv_request, 213
uct_ep_tag_rndv_zcopy, 212
uct_iface_tag_recv_cancel, 214
uct_iface_tag_recv_zcopy, 214
uct_tag_unexp_eager_cb_t, 209
uct_tag_unexp_rndv_cb_t, 209

UCT_ALLOC_METHOD_DEFAULT
UCT Communication Context, 182

UCT_ALLOC_METHOD_HEAP
UCT Communication Context, 182

UCT_ALLOC_METHOD_HUGE
UCT Communication Context, 182

UCT_ALLOC_METHOD_LAST
UCT Communication Context, 182

UCT_ALLOC_METHOD_MD
UCT Communication Context, 182

UCT_ALLOC_METHOD_MMAP
UCT Communication Context, 182

uct_alloc_method_t
UCT Communication Context, 181

UCT_ALLOC_METHOD_THP
UCT Communication Context, 181

uct_allocated_memory, 188
uct_allocated_memory_t

UCT Memory Domain, 190
uct_am_callback_t

UCT Active messages, 199
uct_am_trace_type

UCT Active messages, 200
UCT_AM_TRACE_TYPE_LAST

UCT Active messages, 200
UCT_AM_TRACE_TYPE_RECV

UCT Active messages, 200
UCT_AM_TRACE_TYPE_RECV_DROP

UCT Active messages, 200
UCT_AM_TRACE_TYPE_SEND

UCT Active messages, 200
UCT_AM_TRACE_TYPE_SEND_DROP

UCT Active messages, 200
uct_am_trace_type_t

UCT Communication Resource, 153
uct_am_tracer_t

UCT Active messages, 200
uct_async_event_cb_t

UCT Communication Resource, 157
UCT_CB_FLAG_ASYNC

UCT Communication Resource, 159
UCT_CB_FLAG_RESERVED

UCT Communication Resource, 159
uct_cb_flags

UCT Communication Resource, 159
UCT_CB_PARAM_FLAG_DESC

UCT Communication Resource, 162
UCT_CB_PARAM_FLAG_FIRST

UCT Communication Resource, 162
UCT_CB_PARAM_FLAG_MORE

UCT Communication Resource, 162
uct_cb_param_flags

UCT Communication Resource, 161
uct_cm_attr, 218
uct_cm_attr_field

UCT client-server operations, 224
UCT_CM_ATTR_FIELD_MAX_CONN_PRIV

UCT client-server operations, 224
uct_cm_attr_t

UCT Communication Resource, 154
uct_cm_client_ep_conn_notify

UCT client-server operations, 230

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

294 INDEX

uct_cm_close
UCT client-server operations, 229

uct_cm_config_read
UCT client-server operations, 229

uct_cm_config_t
UCT Communication Resource, 152

uct_cm_ep_client_connect_args, 221
uct_cm_ep_client_connect_args_field

UCT client-server operations, 226
UCT_CM_EP_CLIENT_CONNECT_ARGS_FIELD_REMOTE_DATA

UCT client-server operations, 227
UCT_CM_EP_CLIENT_CONNECT_ARGS_FIELD_STATUS

UCT client-server operations, 227
uct_cm_ep_client_connect_args_t

UCT client-server operations, 222
uct_cm_ep_client_connect_callback_t

UCT client-server operations, 223
uct_cm_ep_priv_data_pack_args, 219
uct_cm_ep_priv_data_pack_args_field

UCT client-server operations, 225
UCT_CM_EP_PRIV_DATA_PACK_ARGS_FIELD_DEVICE_NAME

UCT client-server operations, 225
uct_cm_ep_priv_data_pack_args_t

UCT client-server operations, 221
uct_cm_ep_priv_data_pack_callback_t

UCT client-server operations, 223
uct_cm_ep_resolve_args, 219
uct_cm_ep_resolve_args_field

UCT client-server operations, 225
UCT_CM_EP_RESOLVE_ARGS_FIELD_DEV_NAME

UCT client-server operations, 226
UCT_CM_EP_RESOLVE_ARGS_FIELD_STATUS

UCT client-server operations, 226
uct_cm_ep_resolve_args_t

UCT client-server operations, 221
uct_cm_ep_resolve_callback_t

UCT client-server operations, 224
uct_cm_ep_server_conn_notify_args, 221
uct_cm_ep_server_conn_notify_args_field

UCT client-server operations, 227
UCT_CM_EP_SERVER_CONN_NOTIFY_ARGS_FIELD_STATUS

UCT client-server operations, 227
uct_cm_ep_server_conn_notify_args_t

UCT client-server operations, 222
uct_cm_ep_server_conn_notify_callback_t

UCT client-server operations, 222
uct_cm_h

UCT Communication Resource, 154
uct_cm_listener_conn_request_args, 220
uct_cm_listener_conn_request_args_field

UCT client-server operations, 226
UCT_CM_LISTENER_CONN_REQUEST_ARGS_FIELD_CLIENT_ADDR

UCT client-server operations, 226
UCT_CM_LISTENER_CONN_REQUEST_ARGS_FIELD_CONN_REQUEST

UCT client-server operations, 226
UCT_CM_LISTENER_CONN_REQUEST_ARGS_FIELD_DEV_NAME

UCT client-server operations, 226
UCT_CM_LISTENER_CONN_REQUEST_ARGS_FIELD_REMOTE_DATA

UCT client-server operations, 226
uct_cm_listener_conn_request_args_t

UCT client-server operations, 221
uct_cm_listener_conn_request_callback_t

UCT client-server operations, 222
uct_cm_open

UCT client-server operations, 228
uct_cm_query

UCT client-server operations, 229
uct_cm_remote_data, 220
uct_cm_remote_data_field

UCT client-server operations, 226
UCT_CM_REMOTE_DATA_FIELD_CONN_PRIV_DATA

UCT client-server operations, 226
UCT_CM_REMOTE_DATA_FIELD_CONN_PRIV_DATA_LENGTH

UCT client-server operations, 226
UCT_CM_REMOTE_DATA_FIELD_DEV_ADDR

UCT client-server operations, 226
UCT_CM_REMOTE_DATA_FIELD_DEV_ADDR_LENGTH

UCT client-server operations, 226
uct_cm_remote_data_t

UCT client-server operations, 221
uct_cm_t

UCT Communication Resource, 154
uct_completion, 147
uct_completion_callback_t

UCT Communication Resource, 155
uct_completion_t

UCT Communication Resource, 153
uct_completion_update_status

UCT Communication Resource, 175
uct_component_attr, 142
uct_component_attr_field

UCT Communication Resource, 157
UCT_COMPONENT_ATTR_FIELD_FLAGS

UCT Communication Resource, 157
UCT_COMPONENT_ATTR_FIELD_MD_RESOURCE_COUNT

UCT Communication Resource, 157
UCT_COMPONENT_ATTR_FIELD_MD_RESOURCES

UCT Communication Resource, 157
UCT_COMPONENT_ATTR_FIELD_NAME

UCT Communication Resource, 157
uct_component_attr_t

UCT Communication Resource, 152
UCT_COMPONENT_FLAG_CM

UCT Communication Resource, 158
UCT_COMPONENT_FLAG_RKEY_PTR

UCT Communication Resource, 158
uct_component_h

UCT Communication Resource, 152
uct_component_query

UCT Communication Resource, 162
uct_config_get

UCT Communication Context, 183
uct_config_modify

UCT Communication Context, 184
uct_config_release

UCT Communication Resource, 165

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

INDEX 295

uct_conn_request_h
UCT Communication Resource, 155

uct_device_addr_t
UCT Communication Resource, 154

UCT_DEVICE_TYPE_ACC
UCT Communication Resource, 158

UCT_DEVICE_TYPE_LAST
UCT Communication Resource, 158

UCT_DEVICE_TYPE_NET
UCT Communication Resource, 158

UCT_DEVICE_TYPE_SELF
UCT Communication Resource, 158

UCT_DEVICE_TYPE_SHM
UCT Communication Resource, 158

uct_device_type_t
UCT Communication Resource, 158

uct_ep_addr_t
UCT Communication Resource, 154

uct_ep_am_bcopy
UCT Active messages, 203

uct_ep_am_short
UCT Active messages, 202

uct_ep_am_short_iov
UCT Active messages, 202

uct_ep_am_zcopy
UCT Active messages, 203

uct_ep_atomic32_fetch
UCT Atomic operations, 207

uct_ep_atomic32_post
UCT Atomic operations, 207

uct_ep_atomic64_fetch
UCT Atomic operations, 207

uct_ep_atomic64_post
UCT Atomic operations, 207

uct_ep_atomic_cswap32
UCT Atomic operations, 207

uct_ep_atomic_cswap64
UCT Atomic operations, 206

uct_ep_attr_t
UCT Communication Resource, 153

uct_ep_check
UCT Communication Resource, 167

uct_ep_connect
UCT client-server operations, 228

UCT_EP_CONNECT_PARAM_FIELD_PRIVATE_DATA
UCT client-server operations, 225

UCT_EP_CONNECT_PARAM_FIELD_PRIVATE_DATA_LENGTH
UCT client-server operations, 225

uct_ep_connect_params, 218
uct_ep_connect_params_field

UCT client-server operations, 225
uct_ep_connect_params_t

UCT Communication Resource, 154
uct_ep_connect_to_ep

UCT Communication Resource, 170
uct_ep_create

UCT Communication Resource, 169
uct_ep_destroy

UCT Communication Resource, 170
uct_ep_disconnect

UCT client-server operations, 228
uct_ep_disconnect_cb_t

UCT client-server operations, 223
uct_ep_fence

UCT Communication Resource, 173
uct_ep_flush

UCT Communication Resource, 172
uct_ep_get_address

UCT Communication Resource, 170
uct_ep_get_bcopy

UCT Remote memory access operations, 205
uct_ep_get_short

UCT Remote memory access operations, 205
uct_ep_get_zcopy

UCT Remote memory access operations, 205
uct_ep_h

UCT Communication Resource, 152
UCT_EP_PARAM_FIELD_CM

UCT Communication Resource, 160
UCT_EP_PARAM_FIELD_CM_RESOLVE_CB

UCT Communication Resource, 161
UCT_EP_PARAM_FIELD_CONN_REQUEST

UCT Communication Resource, 160
UCT_EP_PARAM_FIELD_DEV_ADDR

UCT Communication Resource, 160
UCT_EP_PARAM_FIELD_DEV_ADDR_LENGTH

UCT Communication Resource, 161
UCT_EP_PARAM_FIELD_IFACE

UCT Communication Resource, 160
UCT_EP_PARAM_FIELD_IFACE_ADDR

UCT Communication Resource, 160
UCT_EP_PARAM_FIELD_IFACE_ADDR_LENGTH

UCT Communication Resource, 161
UCT_EP_PARAM_FIELD_LOCAL_SOCKADDR

UCT Communication Resource, 161
UCT_EP_PARAM_FIELD_PATH_INDEX

UCT Communication Resource, 161
UCT_EP_PARAM_FIELD_PRIV_DATA

UCT Communication Resource, 161
UCT_EP_PARAM_FIELD_PRIV_DATA_LENGTH

UCT Communication Resource, 161
UCT_EP_PARAM_FIELD_SOCKADDR

UCT Communication Resource, 160
UCT_EP_PARAM_FIELD_SOCKADDR_CB_FLAGS

UCT Communication Resource, 160
UCT_EP_PARAM_FIELD_SOCKADDR_CONNECT_CB_CLIENT

UCT Communication Resource, 160
UCT_EP_PARAM_FIELD_SOCKADDR_DISCONNECT_CB

UCT Communication Resource, 160
UCT_EP_PARAM_FIELD_SOCKADDR_NOTIFY_CB_SERVER

UCT Communication Resource, 160
UCT_EP_PARAM_FIELD_SOCKADDR_PACK_CB

UCT Communication Resource, 160
UCT_EP_PARAM_FIELD_USER_DATA

UCT Communication Resource, 160
uct_ep_params, 144

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

296 INDEX

uct_ep_params_field
UCT Communication Resource, 160

uct_ep_params_t
UCT Communication Resource, 154

uct_ep_pending_add
UCT Communication Resource, 171

uct_ep_pending_purge
UCT Communication Resource, 172

uct_ep_put_bcopy
UCT Remote memory access operations, 204

uct_ep_put_short
UCT Remote memory access operations, 204

uct_ep_put_zcopy
UCT Remote memory access operations, 204

uct_ep_tag_eager_bcopy
UCT Tag matching operations, 211

uct_ep_tag_eager_short
UCT Tag matching operations, 210

uct_ep_tag_eager_zcopy
UCT Tag matching operations, 211

uct_ep_tag_rndv_cancel
UCT Tag matching operations, 213

uct_ep_tag_rndv_request
UCT Tag matching operations, 213

uct_ep_tag_rndv_zcopy
UCT Tag matching operations, 212

uct_error_handler_t
UCT Communication Resource, 156

UCT_EVENT_RECV
UCT Communication Resource, 158

UCT_EVENT_RECV_SIG
UCT Communication Resource, 158

UCT_EVENT_SEND_COMP
UCT Communication Resource, 158

UCT_FLUSH_FLAG_CANCEL
UCT Communication Resource, 158

UCT_FLUSH_FLAG_LOCAL
UCT Communication Resource, 158

UCT_FLUSH_FLAG_REMOTE
UCT Communication Resource, 159

uct_flush_flags
UCT Communication Resource, 158

uct_iface_accept
UCT client-server operations, 227

uct_iface_addr_t
UCT Communication Resource, 154

uct_iface_attr, 143
uct_iface_attr.cap, 148
uct_iface_attr.cap.am, 149
uct_iface_attr.cap.atomic32, 150
uct_iface_attr.cap.atomic64, 150
uct_iface_attr.cap.get, 149
uct_iface_attr.cap.put, 149
uct_iface_attr.cap.tag, 150
uct_iface_attr.cap.tag.eager, 150
uct_iface_attr.cap.tag.recv, 150
uct_iface_attr.cap.tag.rndv, 150
uct_iface_attr_t

UCT Communication Resource, 153
uct_iface_close

UCT Communication Resource, 166
uct_iface_config_t

UCT Communication Resource, 152
uct_iface_event_arm

UCT Communication Resource, 168
uct_iface_event_fd_get

UCT Communication Resource, 168
uct_iface_event_types

UCT Communication Resource, 158
uct_iface_feature

UCT Communication Resource, 161
UCT_IFACE_FEATURE_AM

UCT Communication Resource, 161
UCT_IFACE_FEATURE_AMO32

UCT Communication Resource, 161
UCT_IFACE_FEATURE_AMO64

UCT Communication Resource, 161
UCT_IFACE_FEATURE_FLUSH_REMOTE

UCT Communication Resource, 161
UCT_IFACE_FEATURE_GET

UCT Communication Resource, 161
UCT_IFACE_FEATURE_LAST

UCT Communication Resource, 161
UCT_IFACE_FEATURE_PUT

UCT Communication Resource, 161
UCT_IFACE_FEATURE_TAG

UCT Communication Resource, 161
uct_iface_fence

UCT Communication Resource, 171
UCT_IFACE_FLAG_AM_BCOPY

UCT interface operations and capabilities, 176
UCT_IFACE_FLAG_AM_DUP

UCT interface operations and capabilities, 179
UCT_IFACE_FLAG_AM_SHORT

UCT interface operations and capabilities, 176
UCT_IFACE_FLAG_AM_ZCOPY

UCT interface operations and capabilities, 176
UCT_IFACE_FLAG_ATOMIC_CPU

UCT interface operations and capabilities, 177
UCT_IFACE_FLAG_ATOMIC_DEVICE

UCT interface operations and capabilities, 177
UCT_IFACE_FLAG_CB_ASYNC

UCT interface operations and capabilities, 179
UCT_IFACE_FLAG_CB_SYNC

UCT interface operations and capabilities, 179
UCT_IFACE_FLAG_CONNECT_TO_EP

UCT interface operations and capabilities, 178
UCT_IFACE_FLAG_CONNECT_TO_IFACE

UCT interface operations and capabilities, 178
UCT_IFACE_FLAG_CONNECT_TO_SOCKADDR

UCT interface operations and capabilities, 179
UCT_IFACE_FLAG_EP_CHECK

UCT interface operations and capabilities, 178
UCT_IFACE_FLAG_EP_KEEPALIVE

UCT interface operations and capabilities, 179
UCT_IFACE_FLAG_ERRHANDLE_AM_ID

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

INDEX 297

UCT interface operations and capabilities, 178
UCT_IFACE_FLAG_ERRHANDLE_BCOPY_BUF

UCT interface operations and capabilities, 177
UCT_IFACE_FLAG_ERRHANDLE_BCOPY_LEN

UCT interface operations and capabilities, 178
UCT_IFACE_FLAG_ERRHANDLE_PEER_FAILURE

UCT interface operations and capabilities, 178
UCT_IFACE_FLAG_ERRHANDLE_REMOTE_MEM

UCT interface operations and capabilities, 178
UCT_IFACE_FLAG_ERRHANDLE_SHORT_BUF

UCT interface operations and capabilities, 177
UCT_IFACE_FLAG_ERRHANDLE_ZCOPY_BUF

UCT interface operations and capabilities, 178
UCT_IFACE_FLAG_EVENT_ASYNC_CB

UCT interface for asynchronous event capabilities,
180

UCT_IFACE_FLAG_EVENT_FD
UCT interface for asynchronous event capabilities,

180
UCT_IFACE_FLAG_EVENT_RECV

UCT interface for asynchronous event capabilities,
180

UCT_IFACE_FLAG_EVENT_RECV_SIG
UCT interface for asynchronous event capabilities,

180
UCT_IFACE_FLAG_EVENT_SEND_COMP

UCT interface for asynchronous event capabilities,
180

UCT_IFACE_FLAG_GET_BCOPY
UCT interface operations and capabilities, 177

UCT_IFACE_FLAG_GET_SHORT
UCT interface operations and capabilities, 177

UCT_IFACE_FLAG_GET_ZCOPY
UCT interface operations and capabilities, 177

UCT_IFACE_FLAG_INTER_NODE
UCT interface operations and capabilities, 180

UCT_IFACE_FLAG_PENDING
UCT interface operations and capabilities, 176

UCT_IFACE_FLAG_PUT_BCOPY
UCT interface operations and capabilities, 177

UCT_IFACE_FLAG_PUT_SHORT
UCT interface operations and capabilities, 176

UCT_IFACE_FLAG_PUT_ZCOPY
UCT interface operations and capabilities, 177

UCT_IFACE_FLAG_TAG_EAGER_BCOPY
UCT interface operations and capabilities, 179

UCT_IFACE_FLAG_TAG_EAGER_SHORT
UCT interface operations and capabilities, 179

UCT_IFACE_FLAG_TAG_EAGER_ZCOPY
UCT interface operations and capabilities, 179

UCT_IFACE_FLAG_TAG_RNDV_ZCOPY
UCT interface operations and capabilities, 179

uct_iface_flush
UCT Communication Resource, 171

uct_iface_get_address
UCT Communication Resource, 167

uct_iface_get_device_address
UCT Communication Resource, 166

uct_iface_h
UCT Communication Resource, 152

uct_iface_is_reachable
UCT Communication Resource, 167

uct_iface_mem_alloc
UCT Communication Resource, 168

uct_iface_mem_free
UCT Communication Resource, 169

uct_iface_open
UCT Communication Resource, 165

uct_iface_open_mode
UCT Communication Resource, 159

UCT_IFACE_OPEN_MODE_DEVICE
UCT Communication Resource, 159

UCT_IFACE_OPEN_MODE_SOCKADDR_CLIENT
UCT Communication Resource, 159

UCT_IFACE_OPEN_MODE_SOCKADDR_SERVER
UCT Communication Resource, 159

UCT_IFACE_PARAM_FIELD_AM_ALIGN_OFFSET
UCT Communication Resource, 160

UCT_IFACE_PARAM_FIELD_AM_ALIGNMENT
UCT Communication Resource, 160

UCT_IFACE_PARAM_FIELD_ASYNC_EVENT_ARG
UCT Communication Resource, 160

UCT_IFACE_PARAM_FIELD_ASYNC_EVENT_CB
UCT Communication Resource, 160

UCT_IFACE_PARAM_FIELD_CPU_MASK
UCT Communication Resource, 160

UCT_IFACE_PARAM_FIELD_DEVICE
UCT Communication Resource, 160

UCT_IFACE_PARAM_FIELD_ERR_HANDLER
UCT Communication Resource, 160

UCT_IFACE_PARAM_FIELD_ERR_HANDLER_ARG
UCT Communication Resource, 160

UCT_IFACE_PARAM_FIELD_ERR_HANDLER_FLAGS
UCT Communication Resource, 160

UCT_IFACE_PARAM_FIELD_FEATURES
UCT Communication Resource, 160

UCT_IFACE_PARAM_FIELD_HW_TM_EAGER_ARG
UCT Communication Resource, 160

UCT_IFACE_PARAM_FIELD_HW_TM_EAGER_CB
UCT Communication Resource, 160

UCT_IFACE_PARAM_FIELD_HW_TM_RNDV_ARG
UCT Communication Resource, 160

UCT_IFACE_PARAM_FIELD_HW_TM_RNDV_CB
UCT Communication Resource, 160

UCT_IFACE_PARAM_FIELD_KEEPALIVE_INTERVAL
UCT Communication Resource, 160

UCT_IFACE_PARAM_FIELD_OPEN_MODE
UCT Communication Resource, 160

UCT_IFACE_PARAM_FIELD_RX_HEADROOM
UCT Communication Resource, 160

UCT_IFACE_PARAM_FIELD_SOCKADDR
UCT Communication Resource, 160

UCT_IFACE_PARAM_FIELD_STATS_ROOT
UCT Communication Resource, 160

uct_iface_params, 143
uct_iface_params.mode, 151

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

298 INDEX

uct_iface_params.mode.device, 151
uct_iface_params.mode.sockaddr, 151
uct_iface_params_field

UCT Communication Resource, 159
uct_iface_params_t

UCT Communication Resource, 153
uct_iface_progress

UCT Communication Resource, 175
uct_iface_progress_disable

UCT Communication Resource, 173
uct_iface_progress_enable

UCT Communication Resource, 173
uct_iface_query

UCT Communication Resource, 166
uct_iface_reject

UCT client-server operations, 227
uct_iface_release_desc

UCT Active messages, 201
uct_iface_set_am_handler

UCT Active messages, 201
uct_iface_set_am_tracer

UCT Active messages, 201
uct_iface_tag_recv_cancel

UCT Tag matching operations, 214
uct_iface_tag_recv_zcopy

UCT Tag matching operations, 214
uct_iov, 148
uct_iov_t

UCT Communication Resource, 155
uct_listener_attr, 219
uct_listener_attr_field

UCT client-server operations, 224
UCT_LISTENER_ATTR_FIELD_SOCKADDR

UCT client-server operations, 225
uct_listener_attr_t

UCT Communication Resource, 154
uct_listener_create

UCT client-server operations, 230
uct_listener_destroy

UCT client-server operations, 231
uct_listener_h

UCT Communication Resource, 154
UCT_LISTENER_PARAM_FIELD_BACKLOG

UCT client-server operations, 225
UCT_LISTENER_PARAM_FIELD_CONN_REQUEST_CB

UCT client-server operations, 225
UCT_LISTENER_PARAM_FIELD_USER_DATA

UCT client-server operations, 225
uct_listener_params, 219
uct_listener_params_field

UCT client-server operations, 225
uct_listener_params_t

UCT Communication Resource, 154
uct_listener_query

UCT client-server operations, 231
uct_listener_reject

UCT client-server operations, 231
UCT_MADV_NORMAL

UCT Memory Domain, 192
UCT_MADV_WILLNEED

UCT Memory Domain, 192
uct_md_attr, 187
uct_md_attr.cap, 189
uct_md_attr_t

UCT Communication Resource, 153
uct_md_close

UCT Communication Resource, 163
uct_md_config_read

UCT Memory Domain, 196
uct_md_config_t

UCT Communication Resource, 152
uct_md_detect_memory_type

UCT Memory Domain, 195
UCT_MD_FLAG_ADVISE

UCT Memory Domain, 191
UCT_MD_FLAG_ALLOC

UCT Memory Domain, 190
UCT_MD_FLAG_EXPORTED_MKEY

UCT Memory Domain, 191
UCT_MD_FLAG_FIXED

UCT Memory Domain, 191
UCT_MD_FLAG_INVALIDATE

UCT Memory Domain, 191
UCT_MD_FLAG_LAST

UCT Memory Domain, 191
UCT_MD_FLAG_NEED_MEMH

UCT Memory Domain, 191
UCT_MD_FLAG_NEED_RKEY

UCT Memory Domain, 191
UCT_MD_FLAG_REG

UCT Memory Domain, 191
UCT_MD_FLAG_REG_DMABUF

UCT Memory Domain, 191
UCT_MD_FLAG_RKEY_PTR

UCT Memory Domain, 191
UCT_MD_FLAG_SOCKADDR

UCT Memory Domain, 191
uct_md_h

UCT Communication Resource, 153
uct_md_iface_config_read

UCT Communication Resource, 164
uct_md_is_sockaddr_accessible

UCT Memory Domain, 196
UCT_MD_MEM_ACCESS_ALL

UCT Memory Domain, 192
UCT_MD_MEM_ACCESS_LOCAL_READ

UCT Memory Domain, 191
UCT_MD_MEM_ACCESS_LOCAL_WRITE

UCT Memory Domain, 191
UCT_MD_MEM_ACCESS_REMOTE_ATOMIC

UCT Memory Domain, 191
UCT_MD_MEM_ACCESS_REMOTE_GET

UCT Memory Domain, 191
UCT_MD_MEM_ACCESS_REMOTE_PUT

UCT Memory Domain, 191
UCT_MD_MEM_ACCESS_RMA

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

INDEX 299

UCT Memory Domain, 192
uct_md_mem_advise

UCT Memory Domain, 194
uct_md_mem_attr, 187
uct_md_mem_attr_field

UCT Memory Domain, 192
UCT_MD_MEM_ATTR_FIELD_ALLOC_LENGTH

UCT Memory Domain, 192
UCT_MD_MEM_ATTR_FIELD_BASE_ADDRESS

UCT Memory Domain, 192
UCT_MD_MEM_ATTR_FIELD_DMABUF_FD

UCT Memory Domain, 192
UCT_MD_MEM_ATTR_FIELD_DMABUF_OFFSET

UCT Memory Domain, 192
UCT_MD_MEM_ATTR_FIELD_MEM_TYPE

UCT Memory Domain, 192
UCT_MD_MEM_ATTR_FIELD_SYS_DEV

UCT Memory Domain, 192
uct_md_mem_attr_field_t

UCT Memory Domain, 190
uct_md_mem_attr_t

UCT Memory Domain, 190
uct_md_mem_dereg

UCT Memory Domain, 194
UCT_MD_MEM_FLAG_FIXED

UCT Memory Domain, 191
UCT_MD_MEM_FLAG_HIDE_ERRORS

UCT Memory Domain, 191
UCT_MD_MEM_FLAG_LOCK

UCT Memory Domain, 191
UCT_MD_MEM_FLAG_NONBLOCK

UCT Memory Domain, 191
uct_md_mem_flags

UCT Memory Domain, 191
UCT_MD_MEM_GVA

UCT Memory Domain, 192
uct_md_mem_query

UCT Memory Domain, 193
uct_md_mem_reg

UCT Memory Domain, 194
UCT_MD_MEM_SYMMETRIC_RKEY

UCT Memory Domain, 192
uct_md_mkey_pack

UCT Memory Domain, 197
uct_md_open

UCT Communication Resource, 163
uct_md_ops_t

UCT Communication Resource, 153
uct_md_query

UCT Memory Domain, 193
uct_md_query_tl_resources

UCT Communication Resource, 164
uct_md_resource_desc, 142
uct_md_resource_desc_t

UCT Communication Resource, 152
uct_md_t

UCT Communication Resource, 153
uct_mem_advice_t

UCT Memory Domain, 192
uct_mem_alloc

UCT Memory Domain, 195
UCT_MEM_ALLOC_PARAM_FIELD_ADDRESS

UCT Memory Domain, 193
UCT_MEM_ALLOC_PARAM_FIELD_FLAGS

UCT Memory Domain, 193
UCT_MEM_ALLOC_PARAM_FIELD_MDS

UCT Memory Domain, 193
UCT_MEM_ALLOC_PARAM_FIELD_MEM_TYPE

UCT Memory Domain, 193
UCT_MEM_ALLOC_PARAM_FIELD_NAME

UCT Memory Domain, 193
UCT_MEM_ALLOC_PARAM_FIELD_SYS_DEVICE

UCT Memory Domain, 193
uct_mem_alloc_params_field_t

UCT Memory Domain, 192
uct_mem_alloc_params_t, 188
uct_mem_alloc_params_t.mds, 189
uct_mem_free

UCT Memory Domain, 196
uct_mem_h

UCT Communication Resource, 152
uct_msg_flags

UCT Active messages, 200
uct_pack_callback_t

UCT Communication Resource, 156
uct_pending_callback_t

UCT Communication Resource, 155
uct_pending_purge_callback_t

UCT Communication Resource, 156
uct_pending_req, 148
uct_pending_req_t

UCT Communication Resource, 153
UCT_PROGRESS_RECV

UCT Communication Resource, 159
UCT_PROGRESS_SEND

UCT Communication Resource, 159
UCT_PROGRESS_THREAD_SAFE

UCT Communication Resource, 159
uct_progress_types

UCT Communication Resource, 159
uct_query_components

UCT Communication Resource, 162
uct_release_component_list

UCT Communication Resource, 162
uct_release_tl_resource_list

UCT Communication Resource, 164
uct_rkey_bundle, 188
uct_rkey_bundle_t

UCT Memory Domain, 190
uct_rkey_ctx_h

UCT Communication Resource, 153
uct_rkey_ptr

UCT Memory Domain, 198
uct_rkey_release

UCT Memory Domain, 198
uct_rkey_t

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

300 INDEX

UCT Communication Resource, 152
uct_rkey_unpack

UCT Memory Domain, 197
UCT_SEND_FLAG_PEER_CHECK

UCT Active messages, 200
UCT_SEND_FLAG_SIGNALED

UCT Active messages, 200
UCT_SOCKADDR_ACC_LOCAL

UCT Memory Domain, 190
UCT_SOCKADDR_ACC_REMOTE

UCT Memory Domain, 190
uct_sockaddr_accessibility_t

UCT Memory Domain, 190
uct_sockaddr_conn_request_callback_t

UCT client-server operations, 222
uct_tag_context, 241

completed_cb, 242
priv, 243
rndv_cb, 242
tag_consumed_cb, 242

uct_tag_context_t
UCT Communication Resource, 154

UCT_TAG_RECV_CB_INLINE_DATA
UCT Communication Resource, 161

uct_tag_t
UCT Communication Resource, 155

uct_tag_unexp_eager_cb_t
UCT Tag matching operations, 209

uct_tag_unexp_rndv_cb_t
UCT Tag matching operations, 209

uct_tl_resource_desc, 142
uct_tl_resource_desc_t

UCT Communication Resource, 152
uct_unpack_callback_t

UCT Communication Resource, 157
uct_worker_cb_id_t

UCT Communication Resource, 155
uct_worker_create

UCT Communication Context, 182
uct_worker_destroy

UCT Communication Context, 182
uct_worker_h

UCT Communication Resource, 153
uct_worker_progress

UCT Communication Context, 184
uct_worker_progress_register_safe

UCT Communication Context, 182
uct_worker_progress_unregister_safe

UCT Communication Context, 183
Unified Communication Protocol (UCP) API, 13
Unified Communication Services (UCS) API, 232
Unified Communication Transport (UCT) API, 136
unpack

UCP Data type routines, 136

c⃝ 2025 Unified Communication X (UCX). All rights reserved.

	1 Preface
	1.1 Scope of the Document
	1.2 Audience
	1.3 Document Status
	1.4 License

	2 Introduction
	2.1 Motivation
	2.2 UCX

	3 Design
	3.1 UCS
	3.2 UCT
	3.3 UCP

	4 Conventions and Notations
	4.1 Blocking Behavior
	4.2 Non-blocking Behavior
	4.3 Fairness
	4.4 Interaction with Signal Handler Functions

	5 Deprecated List
	6 Module Documentation
	6.1 Unified Communication Protocol (UCP) API
	6.1.1 Detailed Description
	6.1.2 UCP Application Context
	6.1.2.1 Detailed Description
	6.1.2.2 Data Structure Documentation
	6.1.2.3 Macro Definition Documentation
	6.1.2.4 Typedef Documentation
	6.1.2.5 Enumeration Type Documentation
	6.1.2.6 Function Documentation

	6.1.3 UCP Worker
	6.1.3.1 Detailed Description
	6.1.3.2 Data Structure Documentation
	6.1.3.3 Typedef Documentation
	6.1.3.4 Enumeration Type Documentation
	6.1.3.5 Function Documentation

	6.1.4 UCP Memory routines
	6.1.4.1 Detailed Description
	6.1.4.2 Data Structure Documentation
	6.1.4.3 Typedef Documentation
	6.1.4.4 Enumeration Type Documentation
	6.1.4.5 Function Documentation

	6.1.5 UCP Wake-up routines
	6.1.5.1 Detailed Description
	6.1.5.2 Function Documentation

	6.1.6 UCP Endpoint
	6.1.6.1 Detailed Description
	6.1.6.2 Data Structure Documentation
	6.1.6.3 Typedef Documentation
	6.1.6.4 Enumeration Type Documentation
	6.1.6.5 Function Documentation

	6.1.7 UCP Communication routines
	6.1.7.1 Detailed Description
	6.1.7.2 Data Structure Documentation
	6.1.7.3 Typedef Documentation
	6.1.7.4 Enumeration Type Documentation
	6.1.7.5 Function Documentation

	6.1.8 UCP Configuration
	6.1.8.1 Detailed Description
	6.1.8.2 Data Structure Documentation
	6.1.8.3 Typedef Documentation
	6.1.8.4 Function Documentation

	6.1.9 UCP Data type routines
	6.1.9.1 Detailed Description
	6.1.9.2 Data Structure Documentation
	6.1.9.3 Macro Definition Documentation
	6.1.9.4 Typedef Documentation
	6.1.9.5 Enumeration Type Documentation
	6.1.9.6 Function Documentation
	6.1.9.7 Variable Documentation

	6.2 Unified Communication Transport (UCT) API
	6.2.1 Detailed Description
	6.2.2 UCT Communication Resource
	6.2.2.1 Detailed Description
	6.2.2.2 Data Structure Documentation
	6.2.2.3 Typedef Documentation
	6.2.2.4 Enumeration Type Documentation
	6.2.2.5 Function Documentation
	6.2.2.6 UCT interface operations and capabilities
	6.2.2.7 UCT interface for asynchronous event capabilities

	6.2.3 UCT Communication Context
	6.2.3.1 Detailed Description
	6.2.3.2 Enumeration Type Documentation
	6.2.3.3 Function Documentation

	6.2.4 UCT Memory Domain
	6.2.4.1 Detailed Description
	6.2.4.2 Data Structure Documentation
	6.2.4.3 Typedef Documentation
	6.2.4.4 Enumeration Type Documentation
	6.2.4.5 Function Documentation

	6.2.5 UCT Active messages
	6.2.5.1 Detailed Description
	6.2.5.2 Typedef Documentation
	6.2.5.3 Enumeration Type Documentation
	6.2.5.4 Function Documentation

	6.2.6 UCT Remote memory access operations
	6.2.6.1 Detailed Description
	6.2.6.2 Function Documentation

	6.2.7 UCT Atomic operations
	6.2.7.1 Detailed Description
	6.2.7.2 Function Documentation

	6.2.8 UCT Tag matching operations
	6.2.8.1 Detailed Description
	6.2.8.2 Typedef Documentation
	6.2.8.3 Function Documentation

	6.2.9 UCT client-server operations
	6.2.9.1 Detailed Description
	6.2.9.2 Data Structure Documentation
	6.2.9.3 Typedef Documentation
	6.2.9.4 Enumeration Type Documentation
	6.2.9.5 Function Documentation

	6.3 Unified Communication Services (UCS) API
	6.3.1 Detailed Description
	6.3.2 UCS Communication Resource
	6.3.2.1 Detailed Description
	6.3.2.2 Data Structure Documentation
	6.3.2.3 Typedef Documentation
	6.3.2.4 Enumeration Type Documentation
	6.3.2.5 Function Documentation

	7 Data Structure Documentation
	7.1 ucp_generic_dt_ops Struct Reference
	7.1.1 Detailed Description

	7.2 uct_tag_context Struct Reference
	7.2.1 Detailed Description
	7.2.2 Field Documentation
	7.2.2.1 tag_consumed_cb
	7.2.2.2 completed_cb
	7.2.2.3 rndv_cb
	7.2.2.4 priv

	8 Examples
	8.1 ucp_hello_world.c
	8.2 ucp_client_server.c
	8.3 uct_hello_world.c

	Index

